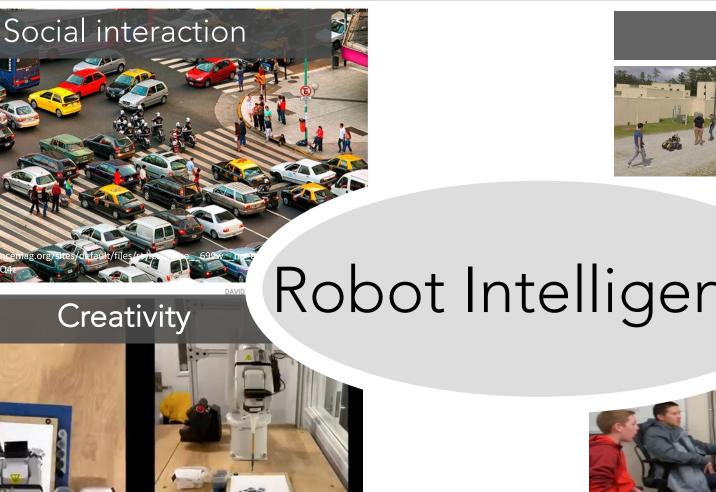


Evaluation Challenges in Social Robot Navigation

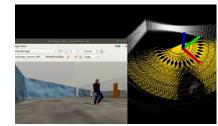
Jean Oh The Robotics Institute Carnegie Mellon University



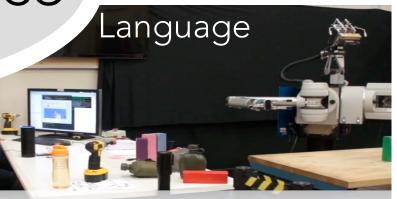
Carnegie Mellon

University

roBot Intelligence Group (BIG)


Jean Oh

Imagination



Robot Intelligence

Using speech, even children can easily interact with robots.

© Jean Oh, Bot Intelligence Group (BIG), CMU

"Measure what is measurable, and make measurable what is not so."

– Galileo Galilei

What is good performance metric for a cleaning robot?

- Total amount of dust collected
- Area covered

When you design performance metric

- Be careful what you wish for
- What you get is what you ask for

Optimal solution is only optimal according to some objective function

Autonomous navigation in a real world

• Main objective is to detect & avoid collision

https://www.youtube.com/watch?v=KnPiP9PkLAs

Autonomous navigation in a real world

Static obstacles Dynamic obstacles Humanmade rules o Traffic rules o Social norms

Main objective is to detect, track, & avoid collision
From passive reaction to proactive coordination

https://www.youtube.com/watch?v=KnPiP9PkLAs

Safe & Seamless Close-proximity Operation of Manned and Unmanned Aircraft in Shared Space

Jay Patrikar, Ian Higgins, Sourish Ghosh, Jimin Sun, Jasmine Aloor, Joao Dantas, Brady Moon, Parv Kapoor, Ingrid Navarro, Benjamin Stoler, Rohan Baijal, Milad Hamidi

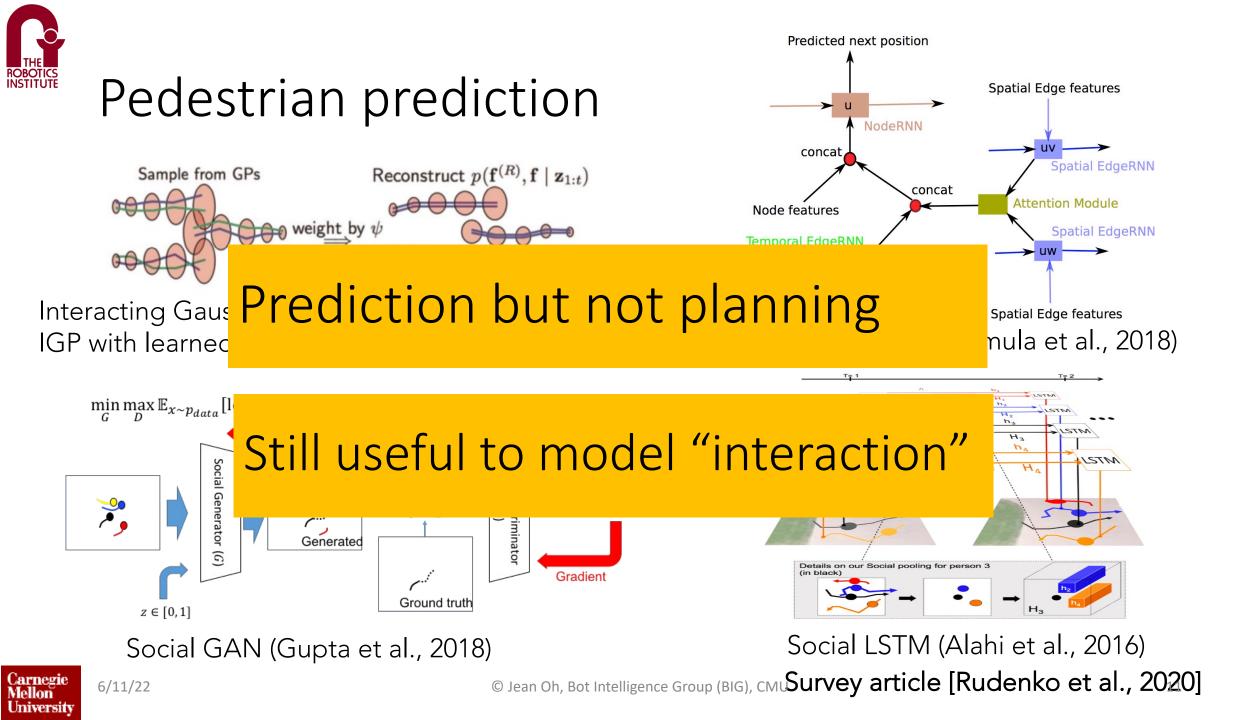
PIs: Sebastian Scherer (basti@cmu.edu) Jean Oh (jeanoh@cmu.edu)

The Robotics Institute, Carnegie Mellon University

Social Robot Navigation

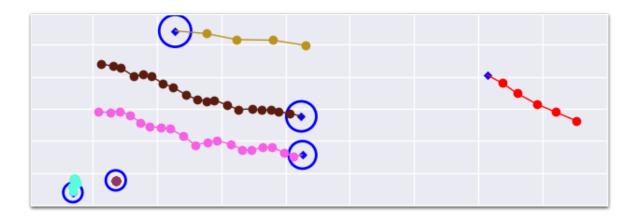
Research Question:

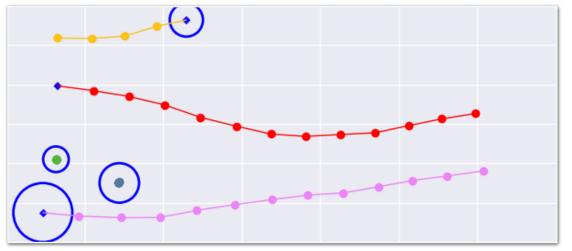
How can we make an autonomous vehicle navigate seamlessly with other vehicles in a complex environment?



Prediction vs. Navigation vs. Social Navigation

	Goal-oriented objectives	Social objectives	Environmental context / physical constraints
Static Navigation	Yes	Safety	Traversability, static obstacles
Trajectory prediction	No	Naturalness	Dynamic obstacles
Social Navigation	Yes	Safety / Norm / Comfort / Naturalness	Static + Dynamic obstacles

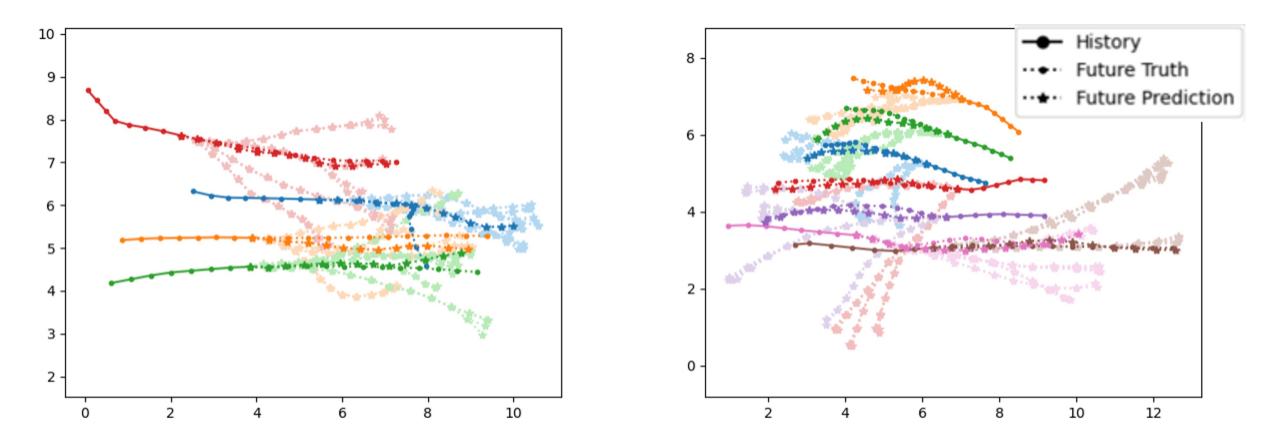




Social Attention: qualitative results

[Vemula et al., 2018]

Learns to give equal relative importance to pedestrians far away to exert any influence



Learns to give high importance to agents with whom there might be a future collision, irrespective of their current proximity

A. Vemula, K. Muelling, J. Oh. Social Attention: Modeling Attention in Human Crowds. In Proc. of IEEE Conference on Robotics and Automation (ICRA), 2018 (Best Paper Award in Cognitive Robotics)

D. Zhao and J. Oh. "Noticing Motion Patterns: Temporal CNN with a Novel Convolution Operator for Human Trajectory Prediction." IEEE Robotics and Automation Letters (RA-L), Special Issue on Long-Term Human Motion Prediction (2020).

Settings:

- Datasets: Recorded pedestrians
- Physical robot testing
- Simulation

Metrics: (Rudenko et al., 2020)

- Geometric metric
 - Average Displacement Error (ADE)
 - Final Displacement Error (FDE)
 - Modified Hausdorff Distance

• Probabilistic metrics

- $\,\circ\,$ Negative log likelihood
- Negative log loss
- \circ Prediction probability
- \circ mADE, mFDE
- $\,\circ\,$ Cumulative probability

	ETH	HOTEL	UNIV	ZARA1	ZARA2	AVG
Linear * [1]	1.33 / 2.94	0.39/0.72	0.82 / 1.59	0.62 / 1.21	0.77 / 1.48	0.79 / 1.59
SR-LSTM-2 * [30]	0.63 / 1.25	0.37 / 0.74	0.51/1.10	0.41 / 0.90	0.32/0.70	0.45 / 0.94
S-LSTM [1]	1.09 / 2.35	0.79 / 1.76	0.67 / 1.40	0.47 / 1.00	0.56/1.17	0.72 / 1.54
S-GAN-P [6]	0.87 / 1.62	0.67 / 1.37	0.76 / 1.52	0.35 / 0.68	0.42/0.84	0.61 / 1.21
SoPhie [23]	0.70/1.43	0.76 / 1.67	0.54 / 1.24	0.30 / 0.63	0.38/0.78	0.54 / 1.15
CGNS [13]	0.62 / 1.40	0.70/0.93	0.48 / 1.22	0.32 / 0.59	0.35/0.71	0.49 / 0.97
PIF [14]	0.73 / 1.65	0.30 / 0.59	0.60 / 1.27	0.38 / 0.81	0.31/0.68	0.46 / 1.00
STSGN [29]	0.75 / 1.63	0.63 / 1.01	0.48 / 1.08	0.30 / 0.65	0.26 / 0.57	0.48 / 0.99
GAT [10]	0.68 / 1.29	0.68 / 1.40	0.57 / 1.29	0.29 / 0.60	0.37 / 0.75	0.52 / 1.07
Social-BiGAT [10]	0.69 / 1.29	0.49 / 1.01	0.55 / 1.32	0.30 / 0.62	0.36/0.75	0.48 / 1.00
Social-STGCNN	0.64 / 1.11	0.49 / 0.85	0.44 / 0.79	0.34 / 0.53	0.30 / 0.48	0.44 / 0.75
Tak	ole 2. A	DE/FDI	E from (Moham	ned et a	I., 2020)

Model	ETH	Hotel	Univ.	Zara1	Zara2	Ave.
Linear	1.33 / 2.94	0.39 / 0.72	0.82 / 1.59	0.62 / 1.21	0.77 / 1.48	0.79 / 1.59
S-LSTM[7]	1.09 / 2.35	0.79 / 1.76	0.67 / 1.40	0.47 / 1.00	0.56 / 1.17	0.72 / 1.54
SGAN(20VP20)[8]	0.87 / 1.62	0.67 / 1.37	0.76 / 1.52	0.35 / 0.68	0.42 / 0.84	0.61 / 1.21
STSGN[17]	0.75 / 1.63	0.63 / 1.01	0.48 / 1.08	0.30 / 0.65	0.26 / 0.57	0.48 / 0.99
S-BiGAT[14]	0.69 / 1.29	0.49 / 1.01	0.55 / 1.32	0.30 / 0.62	0.36 / 0.75	0.48 / 1.00
S-STGCNN[12]	0.64 / 1.11	0.49 / 0.85	0.44 / 0.79	0.34 / 0.53	0.30 / 0.48	0.44 / 0.75
Social-PEC	0.61 / 1.11	0.31 / 0.52	0.47 / 0.82	0.43 / 0.77	0.35 / 0.60	0.43 / 0.76

Table 1. ADE/FDE from (Zhao & Oh, 2020)

=

Evaluation is challenging

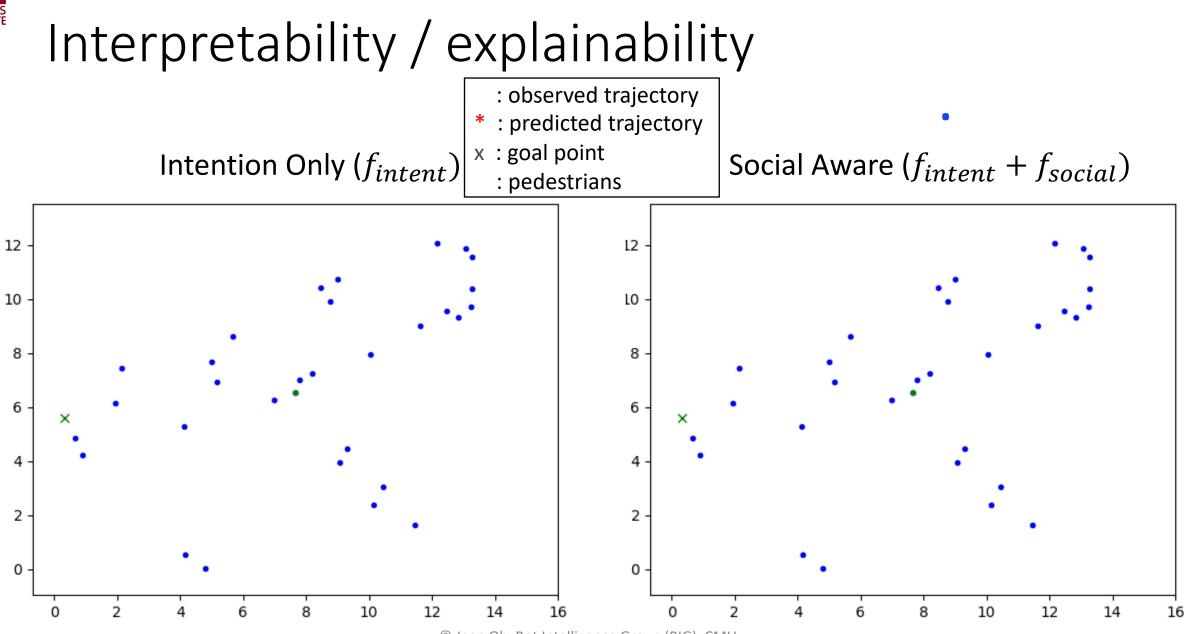
• Cumulative probability

Settings:		ETH	HOTEL	UNIV	ZARA1	ZARA2	AVG
Settings.	Linear * []	1.33 / 2.94	0.39/0.72	0.82 / 1.59	0.62 / 1.21	0.77 / 1.48	0.79 / 1.59
 Datasets: Recorded pedestrians 	SR-LSTM-2 * 30] 0.63 / 1.25	0.37 / 0.74	0.51 / 1.10	0.41/0.90	0.32/0.70	0.45 / 0.94
Batasets: Recorded pedestrians	S-LSTM 📘	1.09 / 2.35	0.79 / 1.76	0.67 / 1.40	0.47 / 1.00	0.56/1.17	0.72 / 1.54
 Physical robot testing 	S-GAN-P [6]	0.87 / 1.62	0.67 / 1.37	0.76 / 1.52	0.35 / 0.68	0.42 / 0.84	0.61 / 1.21
	SoPhie [23]	0 70 / 1 43	0.76/1.67	0 54 / 1 24	0.30/0.63	0.38/0.78	0.54/1.15
• Simu							0.97
Dorformanco	croac	hing	+	11rat	ion	hu	1.00
Metrice Performance	SIEdu	ning	Sdl	Uld		, DU	0.99
		0				,	1.07
• Geon							1.00
	Social-STGCNN	0.64 / 1.11	0.49/0.85	0.44 / 0.79	0.34 / 0.53	0.30 / 0.48	0.44 / 0.75
)20)
^{o F} have we calve	d + b a	raal		hlar	\sim \sim		520)
have we solve	ulle	[ed]		pier	11 5		Ave.
							9 / 1.59
Proba							
 Negative log likelihood 	SGAN(20VP20)[8]	0.87 / 1.62	0.67 / 1.37	0.76 / 1.52	0.35 / 0.68	0.42 / 0.84	
	STSGN[17]		0.63 / 1.01	0.48 / 1.08	0.30 / 0.65		
 Negative log loss 	S-BiGAT[14]	0.69 / 1.29	0.49 / 1.01	0.55 / 1.32	0.30 / 0.62	0.36 / 0.75	5 0.48 / 1.00
 Prediction probability 	S-STGCNN[12]	0.64 / 1.11	0.49 / 0.85	0.44 / 0.79	0.34 / 0.53	0.30 / 0.48	8 0.44 / 0.75
o mADE, mFDE	Social-PEC	0.61 / 1.11	0.31 / 0.52	0.47 / 0.82	0.43 / 0.77	0.35 / 0.60	0 0.43 / 0.76
\cup made, mede -		· · ·					

Table 1. ADE/FDE from (Zhao & Oh, 2020)

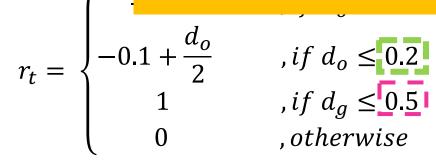
Prediction vs. Navigation vs. Social Navigation

	Goal-oriented objectives	Social objectives	Environmental context / physical constraints
Static Navigation	Yes	Safety	Traversability, static obstacles
Trajectory prediction	No	Naturalness	Dynamic obstacles
Social Navigation	Yes	Safety / Norm / Comfort / Naturalness	Static + Dynamic obstacles



Social Navigation

	Social Objectives
Reinforcement learning (Berg et al., 2011, Chen et al., 2019)	Safety / Comfort
Inverse reinforcement learning (Vasquez et al., 2014)	Naturalness
Generative approach (Tsai & Oh, 2020)	Safety / Comfort Naturalness


[©] Jean Oh, Bot Intelligence Group (BIG), CMU

Evaluation is challenging

	G-S-LSTM	NaviGAN-R	human
S-score	0.40	0.38	0.44
Comfort%	81%	97%	96%
Arrival%	91%	85%	100%

How can we improve evaluation?

Social score (S-score) [Chen et al., 2019]

T.-E. Tsai and J. Oh A Generative Approach for Socially Compliant Navigation, In: IEEE Conference on Robotics and Automation (ICRA). 2020.

Carnegie 6/11/22

University

Can we simulate human pedestrians and generate edge cases? (ongoing work)

6

Frame: 2 SOCIALFORC 5 Δ 3 y (m) 2 1 0 -1_{-1} 2 5 0 1 3 6 x (m)

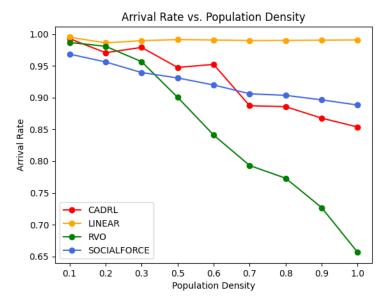
CADRI

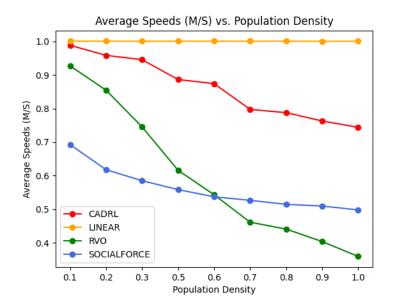
ETH Hotel dataset

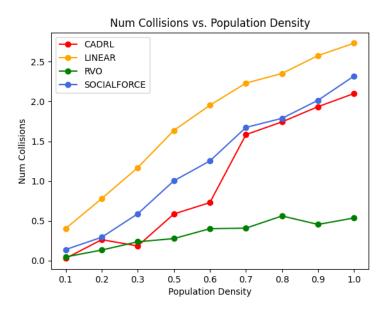
Baselines: Statistics from human data

Metric	ETH	HOTEL	UNIV	UNIV	UNIV	ZARA1	ZARA2					
Mean Population Density	0.3126444648	0.3123697026	0.3048187304	0.4764722944	0.4112925254	0.3537553013	0.3835216581					
Total Collisions	44	142	12	4007	1150	54	809					
Mean Agent Speeds (m/s)	2.3802701	802701 1.158193835 1.469599044 0.7261555953 0.7913439566 1.157796617										
Mean Agent Accel (m/s^2)	0.5525833067 0.2738044999 0.1150437337 0.1048869258 0.1405354981 0.07878554306											
Mean agent Jerk (m/s^3)	agent Jerk (m/s^3) 1.051525397 0.5071377015 0.4104586122 0.3827528888 0.5144874065											
Mean Agent Energy (m^2/s^2)	Agent Energy (m^2/s^2) 0.09254848463 0.1157354273 0.007811867109 0.0435155658 0.06333488574 0.0											
Mean Time Present	5.625555556	5.800514139	8.911864407	20.09542169	16.10414747	13.52702703	18.6627451					
Mean Extra Time to Cool	0.2107760010	0.9202290097	0.6425170992	2 629110707	2 672220462	0.8872987434	1.636151288					
Mean Path Ef						000742	0.9483896619					
Mean Closest						78875	1.408500446					
Mean Furthes 1 Statistics	vary a	cross d	Mean Furthes 1. Statistics vary across different datasets									
Mean Path Irr		-1 ->	01766	14.52586934								
	·		incrent	. ualast	215	24434	14.52586934 0.2264788333					
Mean Social S	,		incrent	. ualase	215							
	4.1 <i>222222</i>	21.33303033	1.094919294	. Ualase	15.02400479	24434	0.2264788333					
% of Agents Average Speeds Slower than 0.5 m/s	6.066721466					24434 2382452	0.2264788333 -0.03590621796					
% of Agents Average Speeds Slower than 0.5 m/s Mean % of Time Congested below 0.5 m/s		21.33303033	1.034310204	31.00122032	19.02400419	24434 2382452 1.351351351	0.2264788333 -0.03590621796 8.823529412					
% of Agents Average Speeds Slower than 0.5 m/s Mean % of Time Congested below 0.5 m/s Mean Frechet Distance	6.066721466	21.55505055 21.61246192	2.847147994	34.11464698	22.18143786	24434 2382452 1.351351351 4.029115252	0.2264788333 -0.03590621796 8.823529412 9.09340225					
Mean Social Solution of Agents Average Speeds Slower than 0.5 m/s Mean % of Time Congested below 0.5 m/s Mean Frechet Distance Mean Dynamic Time Warping Mean Personal Space	6.066721466 0.83	21.55365055 21.61246192 0.35	2.847147994 1.645091595	31.00722092 34.11464698 1.62	13.0240047 <i>3</i> 22.18143786 1.52	24434 2382452 1.351351351 4.029115252 0.97	0.2264788333 -0.03590621796 8.823529412 9.09340225 1.13					

Evaluation of the algorithms in self-play setting (example: UNIV dataset)

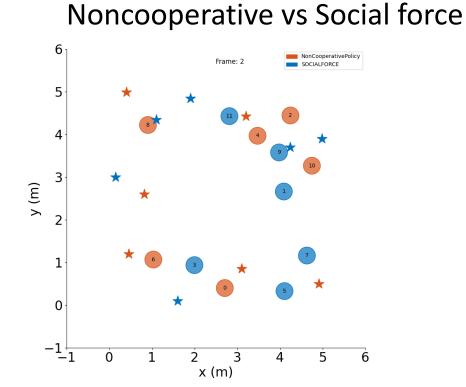

Metric	UNIV	CADRL	LINEAR	RVO	SOCIALFORCE	CVMCVM	SLSLSTM	SOCIALGAN	SPEC	STGCNN
Mean Population Density	0.3975278501	0.3472515248	0.3509337397	0.3847244492	0.3692341188	0.3622348168	0.3556616657	0.339333059	0.3325776914	0.3294938716
Total Collisions	1723	6	1468	2204.666667	416.3333333	1695.333333	1697.333333	1267.666667	1516.666667	1149
Mean Agent Speeds (m/s)	0.995699532	0.6723677736	0.6829691502	0.5006556012	0.4072565826	0.6830343372	0.6827701575	0.6830438697	0.6829667187	0.6828380588
Mean Agent Accel (m/s^2)	0.1201553859	0.612437318	0.6092288804	0.5840025709	0.6400772189	0.6172825503	0.5698783774	0.5405915469	0.5860519668	0.5868453704
Mean agent Jerk (m/s^3)	0.4358996359	4.113602076	3.724377352	3.803070873	4.788470119	3.771397745	3.930844878	4.245000709	3.907776868	4.160032972
Mean Agent Energy (m^2/s^2)	0.03822077288	0.1100470263	0.0843338024	0.1846045926	0.2654254698	-0.03826908955	-0.01105743823	0.03078228072	0.03219459618	0.03623843857
Mean Time Present	15.03714452	12.38890477	11.44557957	18.7640627	20.67558483	11.25442614	12.99689523	18.15877684	18.77065965	17.46653853
Mean Extra Time to Goal	2.317986053	1.038723276	0.02159775092	2.947601783	1.834487335	0.02126524006	1.801867991	1.555981342	2.145439465	1.875514367
Mean Path Efficiency								9	0.8888192605	0.9114520544
Mean Closest Proxim								;	1.510674469	1.4974031
Mean Furthest Proxin								;	20.11347914	20.29266275
Mean Path Irregularit	No sing	alo alc	orithr	nica	cloary	vinnor		ļ.	7.122485047	2.737197199
Mean Social Score @	NO SHI	SIE ale		A IS a y	lear w			5	-0.5479867549	-0.3772797719
% of Agents Average									0	0
Mean % of Time Con								6	0.5958214641	0.5859886833
Mean Frechet Distance	1.34338933	1.23246997	0.1398323245	0.8646358617	0.567550283	0.1410523182	0.2525811906	1.1/9284/61	0.7659049205	1.309322665
Mean Dynamic Time Warping	39.99682084	135.7402589	7.999784067	131.1768809	75.67122213	7.871672719	14.58666894	151.976061	92.6619339	165.0198372
Mean Personal Space	50.94757022									


Green indicates the algorithm closest to the human data ${\color{black}\bullet}$

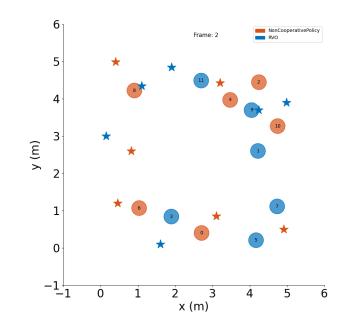


3. In self-play, algorithms exhibit unique trends

Arrival rate


Arrival speed

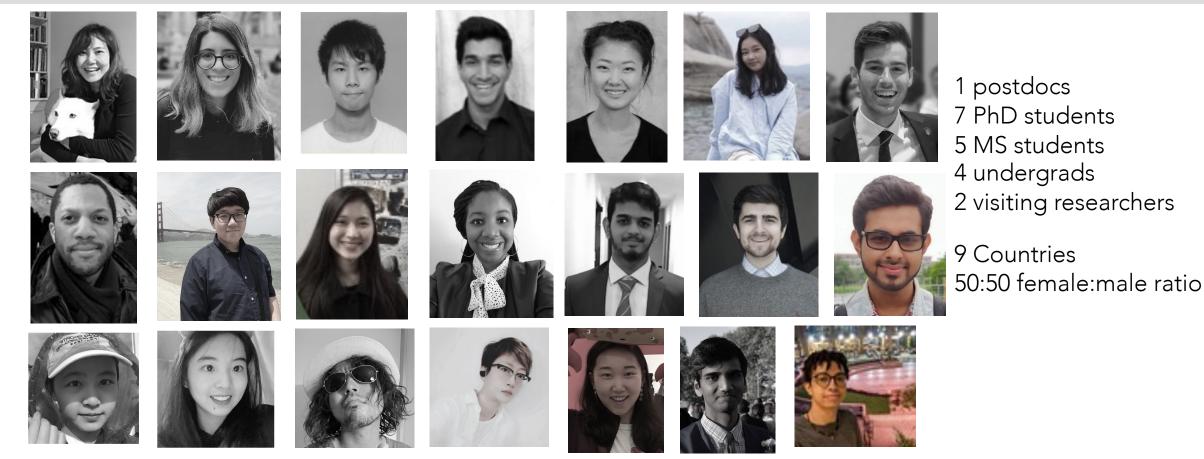
Number of collisions



4. In tournament, algorithms exploit/get exploited

Noncooperative vs RVO

Future directions on social robot navigation


- Statistics vary across different datasets. Can we define a similarity metric using statistical properties?
- No single algorithm is a clear winner. Can we generate an agent population that is statistically similar?
- In self-play, algorithms exhibit unique trends. Are algorithms including enough variance?
- In tournament, algorithms exploit/get exploited. Can we design highlevel strategy of mixture algorithm in a repeated game setting?

roBot Intelligence Group (BIG)

Jean Oh

Ingrid Navarro, Sam Shum, Tanmay Shankar, Xuning Yang, Emily Byun, Peter Schaldenbrand, Jonathan Francis, Meghdeep Jana, Jimin Sun, Abby Yao, Nariaki Kitamura, Ben Stoler, Mayank Mali, Zhixuan Liu, Shaunak Halbe, Zhanxin Wu, Beverley-Claire Okogwu, Yuning Wu, Soonmin Hwang, Almutwakel Hassan

Carnegie Mellon University

6/11/22

© Jean Oh, Bot Intelligence Group (BIG), CMU

Thank you for your attention. Questions?

Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Steinfeld, A., Trautman, P., & Oh, J. (2021). "Core Challenges of Social Robot Navigation: A Survey." arXiv preprint arXiv:2103.05668.

