

Social Navigation in the Emergency Department Angelique Taylor, Sachiko Matsumoto, Wesley Xiao, Laurel D. Riek Dept. of Computer Science & Engineering University of California San Diego

Video credit: Dr. Ryan McGarry, LA+USC Medical Center ED

Social Navigation in the Emergency Department

Goal: Design robots that socially navigate in safety-critical environments.

Taylor, A., Murakami, M., Kim, S., Chu, R., and Riek, L.D. (2022) Hospitals of the Future: Designing Interactive Robotic Systems for Resilient Emergency Departments. In Proc. of the ACM Conference on Computer Supported Collaborative Work (CSCW)

Taylor, A., Matsumoto, S., Xiao, W., and Riek, L.D. (2021) "Social Navigation for Mobile Robots in the Emergency Department." International Conference on Robotics and Automation (ICRA).

Taylor, A., Matsumoto, S., and Riek, L.D. Situating Robots in the Emergency Department. (2020) AAAI Spring Symposium on Applied AI in Healthcare: Safety, Community, and the Environment.

3

Context

A user (ED staff member) requests materials to be delivered a robot.

Users

Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

4

Research Questions

1) How to model a patient's level of acuity while being treated by a team of clinicians?

2) How should a robot optimize its path to deliver supplies to clinicians treating patients with varying levels of acuity?

Prior Work

Tai et al., 2017

Zhu et al., 2016 CORNELL TECH

Tolani et al., 2020

Kulhanek et al., 2019

Deep Q-Networks

- Experience Replay Memory:
- •State
- Next State
- Action
- •Reward

Episodes: collection of experiences

Exploration: ϵ -greedy, $0 < \epsilon < 1$

Assumptions

- Discrete 2D environment
- Videos are used for map actors
- Observations: video of activities
- Stationary actors

Cumulative Reward:

Use reinforcement learning to explore paths that take patient acuity level into consideration

- States **S** are locations on the map
- Actions A are the move from one location on a map to another location
- Reward **R** encodes the level of patient acuity
- Bellman Equation:

$$Q^*(s_t, a_t) = \mathbf{E}_{s_t \sim S}[r_t + \gamma \max_{a_t} Q^*]$$

 $(s_t, a_t)|s, a|$

Patient Acuity Detection

High-Acuity patients

- Result in chaotic, dynamic motion
- Require more resources than lowacuity patients

High-Acuity Patient

Low-Acuity Patient

Patient Acuity Detection

Acuity Score (AS) \in [0,1]

Inspired by Term Frequency Inverse Document Frequency (tf-idf) from NLP.

$$AS \leftarrow \overrightarrow{v} \frac{|P|}{1+|T|}$$

- \vec{v} average velocity of all image frames from a motion estimation method in a given video.
- |P| is the maximum number of people in a given video.
- |T| number of patients being treated in the ED.

Patient Acuity Detection

Acuity Score (AS) \in [0,1]

Inspired by Term Frequency Inverse Document Frequency (tf-idf) from NLP.

$$AS \leftarrow \overrightarrow{v} \frac{|P|}{1+|T|}$$

- \vec{v} average velocity of all image frames from a motion estimation method in a given video.
- |P| is the maximum number of people in a given video.
- |T| number of patients being treated in the ED.

Created New Emergency Department Dataset

- Collected videos of clinical work in real EDs
 - Representing various levels of patient acuity
 - 689,000 segments videos
- Computed AS across all videos

Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

14

Safety-Critical Deep Q-Network

Evaluation

VS.

A* Search

Random Walk

Dijkstra

Results

	Map 1				Map 2			
	Avg. Path		Avg. HA		Avg. Path		Avg. HA	
	Length \downarrow		Penalties \downarrow		Length \downarrow		Penalties \downarrow	
Method	OF	KD	OF	KD	OF	KD	OF	KD
Random Walk	243.6	231.0	5.9	5.6	231.6	240.6	3.1	10.9
A*	12.6	11.7	0.1	0.2	11.2	11.9	0	0
Dijkstra	11.6	10.4	0.1	0.3	12.0	12.0	0.1	0
SafeDQN	11.3	9.4	0	0.1	17.2	10.6	0.1	0
	Мар З				Map 4			
	Avg. Path		Avg. HA		Avg. Path		Avg. HA	
	Length \downarrow		Penalties \downarrow		Length \downarrow		Penalties \downarrow	
Method	OF	KD	OF	KD	OF	KD	OF	KD
Method Random Walk	OF 247.9	KD 215.9	OF 6.7	KD 2.1	OF 225.6	KD 215.8	OF 4.7	KD 10.4
Method Random Walk A*	OF 247.9 10.9	KD 215.9 11.7	OF 6.7 0	KD 2.1 0.1	OF 225.6 11.6	KD 215.8 10.7	OF 4.7 0.1	KD 10.4 1.0
Method Random Walk A* Dijkstra	OF 247.9 10.9 10.2	KD 215.9 11.7 11.4	OF 6.7 0 0	KD 2.1 0.1 0.1	OF 225.6 11.6 11.6	KD 215.8 10.7 12.3	OF 4.7 0.1 0.1	KD 10.4 1.0 1.5

SafeDQN performed best at avoiding high acuity patients.

Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

17

A* Search

SafeDQN encounters

3 patients Length = 22

Total patients: 11

Dijkstra

1 patient _ength = 22

1 patient Length = 22

Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

18

A* Search

SafeDQN encounters

3 high-acuity patients Length = 22 Robot Low-acuity patient High-acuity patient Tages

Total patients: 11

Dijkstra

SafeDQN

A* Search

SafeDQN encounters

3 patients Length = 22

Total patients: 17

Dijkstra

SafeDQN

2 patients Length = 22

3 patients Length = 22

A* Search

SafeDQN encounters

3 high-acuity patients Length = 22

Total patients: 17

Dijkstra

SafeDQN

2 high-acuity patients 3 low acuity patients Length = 22Length = 22**Robot Path** Goal Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

Results - Example 3 A* Search

SafeDQN encounters

3 patients Length = 22

Total patients: 22

Dijkstra

SafeDQN

4 patients Length = 22

4 patients Length = 22

Results - Example 3 A* Search

SafeDQN encounters

Total patients: 22

Dijkstra

|⊖|- ·

SafeDQN

3 high-acuity patients 1 high-acuity patient 1 low-acuity patient 3 low-acuity patients Length = 22Length = 22Robot Path Goal Taylor, A., Matsumoto, S., Xiao, W., Riek, L.D. (ICRA, 2021)

SafeDQN: Future Work

Contributions & Impact

Developed an acuity-aware social navigation system for robots working in the Emergency Department to enable them to generate efficient, safety-compliant paths.

To the best of our knowledge, SafeDQN is the first method to explore robot navigation while considering patient severity.

Social Navigation in the Emergency Department

Sachiko Matsumoto

Wesley Xiao

Laurel Riek, Ph.D.

