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Abstract— We study the problem of safe and socially aware
robot navigation in dense and interactive human crowds. We
redefine the personal zones of walking pedestrians with their
future trajectories. The predicted personal zones are incor-
porated into a reinforcement learning framework to prevent
the robot from intruding into the personal zones. To learn
socially aware navigation policies, we propose a novel recurrent
graph neural network with attention mechanisms to capture
the interactions among agents through space and time. We
demonstrate that our method enables the robot to achieve good
navigation performance and non-invasiveness in challenging
crowd navigation scenarios in simulation and real world.

I. INTRODUCTION

As robots are increasingly used in human-centric envi-
ronments, social navigation is an important yet challenging
problem. In public spaces, people have clear norms about
personal spaces [1], [2]. A robot that breaks into people’s
personal space can make them feel uncomfortable and may
result in accidents [3]. To navigate in a safe and socially
aware manner, the robot must reason about the interactions
in the crowd and avoid intrusions into the personal spaces
of its surrounding pedestrians.

Robot navigation in dynamic environments has received
much attention for many years [4]–[8]. Most works define the
humans’ personal zones as simplistic circles to represent the
non-traversable regions for the robot, as shown in Fig. 1a [6],
[8]–[13]. However, the circular personal zones ignore the
past motions and future intentions of walking humans. In
addition, these methods only consider the interactions be-
tween the robot and humans, while ignoring the human-
human interactions. As a result, the navigation performance
and the social awareness of the robot deteriorate in denser
and more complicated human crowds.

To incorporate future intentions of pedestrians into plan-
ning, trajectory-based crowd navigation methods first use
trajectory predictors to predict other agents’ trajectories for
one step. Then, the predicted trajectories are used to learn
state transition probabilities and plan a feasible path for
the robot [14]–[17]. However, these methods may still lead
to impolite behaviors in Fig. 1a, since (1) the one-step
predictions do not capture the long-term intent of each

* denotes equal contribution.
S. Liu, P. Chang, Z. Huang, W. Liang, N. Chakraborty and K.

Driggs-Campbell are with the Department of Electrical and Computer
Engineering at the University of Illinois at Urbana-Champaign. emails:
{sliu105,pchang17,zheh4,neeloyc2,weihang2,krdc}@illinois.edu

J. Geng is with the Robotics Institute at Carnegie Mellon University.
email: junyigen@andrew.cmu.edu

Fig. 1: The simplistic personal zones and our prediction-based personal
zones. (a) A simplistic social zone of a walking pedestrian is a circle
centered at the pedestrian’s position, which may result in unsafe or unsocial
robot behaviors. (b) Our prediction-based social zone of a pedestrian is a set
of circles centered at its future positions, which improves the performance
and social awareness of the robot.

human, and (2) the planner does not penalize the robot if
it intrudes into the predicted paths.

To address these problems, we redefine the personal zones
of walking humans as a set of circles centered at their
future positions, as shown in Fig. 1b, and approximate
the personal zones with a pretrained pedestrian trajectory
predictor. The prediction-based personal zones capture the
interactions and future intentions of people in a crowd
more accurately than the simplistic circles. To learn a robot
policy, we incorporate the predicted personal zones into a
model-free reinforcement learning (RL) framework, which
effectively prevents the robot from intruding into humans’
personal zones. Although the predicted trajectories can make
more spaces untraversable and lead to the freezing robot
problem [18], our method is less prone to such problems
since RL allows the robot to explore the environment and
learn from its past experience [13].

We model the crowd navigation scenario as a spatio-
temporal (st) interaction graph to capture the interactions
among agents through both space and time. Then, we convert
the st-interaction graph to a novel end-to-end neural net-
work. In the network, we use multi-head attention to model
the human-human and robot-human interactions. With the
predicted personal zones and the interaction graph neural
network, the robot is proactive, resilient, and non-invasive
while navigating through dense and interactive crowds.

The main contributions of this paper are as follows. (1)
We redefine the personal zones for walking human crowds
with their future motions. We propose a novel method to
incorporate the predicted personal zones into a model-free
RL framework for robot crowd navigation. (2) We propose



Fig. 2: The spatial-temporal interaction graph and the network architecture. (a) Graph representation of crowd navigation. The robot node is denoted
by w and the i-th human node is denoted by ui. HH edges and HH interaction functions are in blue, while RH edges and RH interaction functions are
in red. Temporal function that connects the graphs at adjacent timesteps is in purple. (b) Our network. A trajectory predictor is used to predict personal
zones. Two attention mechanisms are used to model the human-human interactions and robot-human interactions. We use a GRU as the temporal function.

a novel graph neural network that uses attention mechanism
to effectively capture the spatial and temporal interactions
among heterogeneous agents. (3) The experiments demon-
strate that our method outperforms previous works in terms
of navigation performance and social awareness.

II. METHODOLOGY

In this section, we first formulate the crowd navigation
as an RL problem and introduce the social reward function.
Then, we present our approach to model the crowd naviga-
tion scenario as a spatio-temporal interaction graph, which
leads to the derivation of our network architecture.

A. Preliminaries

1) MDP formulation: Consider a robot navigating and
interacting with humans in a 2D Euclidean space. We model
the scenario as a Markov Decision Process (MDP), defined
by the tuple ⟨S,A,P, R, γ,S0⟩. Let wt be the robot state
which consists of the robot’s position (px, py), goal position
(gx, gy), maximum speed vmax, heading angle θ, and radius
of the robot base ρ. Let ut

i be the current state of the i-
th human at time t, which consists of the human’s position
(pix, p

i
y). Then, the K future and the M previous positions

of the i-th human are denoted as ût+1:t+K
i and ut−M :t−1

i ,
respectively. We define the state st ∈ S of the MDP to be
st = [wt,ut

1, û
t+1:t+K
1 , ...,ut

n, û
t+1:t+K
n ] if a total number

of n humans are observed at the timestep t, where n may
change within a range in different timesteps.

At each timestep t, the robot takes an action at ∈ A
according to its policy π(at|st). In return, the robot receives
a reward rt and transits to the next state st+1. Meanwhile,
all other humans also take actions according to their policies
and move to the next states. The process continues until the
robot reaches its goal, t exceeds the maximum episode length
T , or the robot collides with any humans.

2) Reward function: To discourage the robot from intrud-
ing into the predicted personal zones of humans, we use a
social reward rsocial to penalize such intrusions:

risocial(st) = min
k=1,...,K

(
1t+k
i

rc
2k

)
rsocial(st) = min

i=1,...,n
risocial(st)

(1)

where 1t+k
i indicates whether the robot collides with the

predicted position of the human i at time t+k and rc = −20

is the penalty for collision. We assign different weights to
the intrusions at different prediction timesteps, and thus the
robot gets less penalty if it intrudes into the predicted social
zone further in the future.

In addition, we add a potential-based reward rpot =
2(−dtgoal + dt−1

goal) to guide the robot to approach the goal,
where dtgoal is the L2 distance between the robot position
and goal position at time t. Let Sgoal be the set of goal states,
where the robot successfully reaches the goal, and Sfail be
the set of failure states, where the robot collides with any
human. Then, the whole reward function is defined as

r(st, at) =


10, if st ∈ Sgoal

rc, if st ∈ Sfail

rpot(st) + rsocial(st), otherwise.
(2)

Intuitively, the robot gets a high reward when it approaches
the goal and avoids intruding into the current and future
positions of all humans.

B. Spatio-Temporal Interaction Graph
We formulate the crowd navigation scenario as a spatio-

temporal (st) interaction graph. As shown in Fig. 2a, at each
timestep t, our st-interaction graph Gt = (Vt, Et) consists of a
set of nodes Vt and a set of edges Et. The nodes represent the
visible agents. The edges connect two different visible agents
and represent the spatial interactions between the agents at
the same timestep. We divide all edges Et into the human-
human (HH) edges that connect two humans and the robot-
human (RH) edges that connect the robot and a human.
The two types of edges allow us to factorize the spatial
interactions into HH interaction function and RH interaction
function. Compared with the previous works that ignore HH
edges [6], [8], [10], [13], our method considers the pair-wise
interactions among all visible agents and thus scales better
in dense and highly interactive crowds.

Since the movements of all agents cause the visibility of
each human to change dynamically, the set of nodes Vt and
edges Et and the parameters of the interaction functions may
change correspondingly. To this end, we integrate the tempo-
ral correlations of the graph Gt at different timesteps using
another function denoted by the purple box in Fig. 2a. The
temporal function connects the graphs at adjacent timesteps,
which overcomes the short-sightedness of reactive methods
and enables long-term decision-making of the robot.



To reduce the number of parameters, the same type of
edges share the same function parameters. This parameter
sharing is important for the scalability of our st interaction
graph because the number of parameters is kept constant with
an increasing number of humans [19].

C. Network Architecture

As shown in Fig. 2b, we derive our network architecture
from the st-interaction graph. In our network, a pretrained
trajectory predictor predicts the personal zones of humans.
We represent the HH and RH functions as feedforward
networks with attention mechanisms, referred to as HH attn
and RH attn respectively. We represent the temporal function
as a gated recurrent unit (GRU).

1) Trajectory predictor: Since the robot has a limited
field of view and the tracking of humans is imperfect, we
use a Gumbel Social Transformer (GST), which provides
unbiased modeling of partially detected humans, to predict
the personal zones of humans [20]. As shown in Fig. 2b, the
trajectory predictor takes the trajectories of observed humans
from time t − M to t as input and predicts their future
trajectories from time t+ 1 to t+K:

ût+1:t+K
i = GST (ut−M :t

i ), i ∈ {1, ..., n} (3)

We concatenate the current states and the predicted future
states of humans as one of the input observations of the
robot policy network. To compute the intrusions in Eq. 1 for
rewards, we add a circle centered at each predicted position
to approximate personal zones as shown in Fig. 1b.

2) Attention mechanisms: The HH and RH attention func-
tions are similar to the scaled dot-product attention in [21],
which computes attention score using a query Q and a key
K, and apply the normalized score to a value V .

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V (4)

where d is the dimension of the queries and keys.
In HH attention, the current states and the predicted future

states of humans are concatenated and passed through linear
layers to obtain Qt

HH ,Kt
HH , V t

HH ∈ Rn×dHH , where dHH

is the attention size for the HH attention. We obtain the
human embeddings vtHH ∈ Rn×dHH using a multi-head
scaled dot-product attention, and the number of attention
heads is 8.

In RH attention, Kt
RH ∈ R1×dRH is the linear embedding

of the robot states wt and Qt
RH , V t

RH ∈ Rn×dRH are
linear embeddings of the weighted human features from HH
attention vtHH . We compute the attention score from Qt

RH

and Kt
RH as in Eq. 4, transpose the score, and apply the

score to V t
RH to obtain the twice weighted human features

vtRH ∈ R1×dRH with a single head.
In HH and RH attention networks, we use binary masks

that indicate the visibility of each human to prevent attention
to invisible humans. Unlike DS-RNN that fills the invisible
humans with dummy values [13], the masks provide unbiased
gradients to the attention networks, which stabilizes and
accelerates the training.

3) GRU: We embed the robot states wt with linear layers
fR to obtain vtR, which are concatenated with the twice
weighted human features vtRH and fed into the GRU. Finally,
the output of the GRU is input to a fully connected layer to
obtain the value V (st) and the policy π(at|st).

4) Training: We train the trajectory predictor with a
dataset of human trajectories collected from our simulator.
In RL training, we freeze the trainable parameters of the
trajectory predictor and use Proximal Policy Optimization
(PPO) for policy and value function learning [22]. We train
trajectory predictor and RL policy separately because the two
tasks have different objectives, resulting in unstable and less
efficient joint training.

III. EXPERIMENTS AND RESULTS

In this section, we present our simulation environment,
experiment setup, and experimental results.

A. Simulation environment

As shown in Fig. 3, in our 2D environment, the robot
has a limited sensor range of 5m. The maximum number
of humans can reach up to 20. In each episode, the starting
and goal positions of the robot and the humans are randomly
chosen. To simulate a continuous human flow, humans will
move to new random goals immediately after they arrive at
their original goals. All humans are controlled by ORCA
and react only to other humans but not to the robot. We use
holonomic kinematics for each agent, whose action at time
t consists of the desired velocity along the x and y axis,
at = [vx, vy]. Our environment mimics complex real-world
crowds with the following randomizations. First, all humans
occasionally change their goal positions within an episode.
Second, each human has random maximum speed and radius.

B. Experiment setup

1) Baselines and Ablation Models: We denote our method
as (GST, HH attn). We choose ORCA [6] and DS-RNN [13]
as baselines1. In another baseline denoted as (Const vel, HH
attn), we replace the GST predictor with a constant velocity
predictor, which predicts the future trajectories by the latest
velocity of the agent.

2) Training and Evaluation: For all RL-based methods,
we use the same reward as defined in Eq. 2 and train
them for 2 × 107 timesteps. We test all methods with 500
random unseen test cases. Our metrics include navigation
metrics and social metrics. The navigation metrics measure
the quality of the navigation and include the percentage
success rate (SR), average navigation time (NT) in seconds,
and path length (PL) in meters of the successful episodes.
The social metrics measure the social awareness of the agent,
which include intrusion time ratio (ITR) and social distance
during intrusions (SD) in meters. The intrusion time ratio per
episode is defined as c/C, where c is the number of timesteps
that the robot is in any human’s ground truth social zone
and C is the length of that episode. The ITR is the average

1Comparison to more baselines can be found in [23]



Fig. 3: Comparison of different methods in the same testing episode with randomized humans. The orientation of an agent is indicated by a red
arrow, the robot is the yellow disk, and the robot’s goal is the red star. We outline the borders of the robot sensor range with dashed lines. Represented
as empty circles, the humans in the robot’s field of view are blue and those outside are red. The ground truth future trajectories and personal zones are in
gray and are only used to visualize intrusions, and the predicted trajectories are in orange.

ratio of all testing episodes. We define SD as the average
distance between the robot and its closest human when an
intrusion occurs. To ensure a fair comparison, all intrusions
are calculated by ground truth future positions of humans.

TABLE I: Testing results

Method SR↑ NT↓ PL↓ ITR↓ SD↑

ORCA 69.0 14.77 17.67 19.61 0.38
DS-RNN 64.0 16.31 19.63 23.91 0.34
Ours (Const vel, HH attn) 87.0 14.03 20.14 7.00 0.42
Ours (GST, HH attn) 89.0 15.03 21.31 4.18 0.44

C. Results

1) Navigation performance: From Table I, our method
(GST, HH attn) outperforms ORCA and DS-RNN by a
large margin in terms of success rate. Fig 3a, b, and d
provide an example episode where (GST, HH attn) succeeds
but ORCA and DS-RNN end up with collisions. Since the
above two baselines only model RH interactions but ignore
HH interactions, these results suggest that the human-human
interactions are essential for dense crowd navigation and are
successfully captured by our HH attention mechanism.

However, we also notice that in both scenarios, compared
with constant velocity predictor, GST predictor only im-
proves the success rate with small margins. The reason is
that the humans in our simulator are controlled by ORCA,
which prefers linear motion if no other agents are nearby.

2) Social awareness: From Table I, we observe that
compared with ORCA and DS-RNN, the models aided by
the trajectory predictors have significantly lower intrusion
time ratio (ITR) and higher social distance during intrusions

(SD). Our method (GST, HH attn) has the lowest ITR and
SD and therefore, the robot is the least invasive and most
polite. For example, the robot in Fig 3d always keeps a
good social distance from the personal zones of all humans,
while it occasionally intrudes the personal zones in Fig 3c.
In contrast, without predicted personal zones, the robots in
Fig 3a and b are notably more aggressive and impolite.
These results indicate that the proposed prediction-based
personal zones accurately capture the personal space of
walking pedestrians. Moreover, a better trajectory predictor
approximates the personal zones more accurately, which
leads to better policies.

3) Real-world experiments: We deploy the model trained
in the simulator to a TurtleBot 2i. A video demonstra-
tion of both simulation and real world results can be
found at https://www.youtube.com/watch?v=p_
asv42Kl8Q.

IV. CONCLUSION AND FUTURE WORK

We propose a novel learning framework for socially-
aware crowd navigation. We redefine the personal zones of
the walking humans with their long-term future trajectories,
which are incorporated into an RL framework to prevent the
intrusions of the robot. We capture the spatial interactions
in the crowd with self-attention mechanisms and propose
a novel graph neural network to learn navigation policies.
Our method shows promising results. Possible directions to
explore in future work include (1) using datasets collected
from real pedestrians to train our method, and (2) performing
user studies to evaluate the social awareness of our model.

https://www.youtube.com/watch?v=p_asv42Kl8Q
https://www.youtube.com/watch?v=p_asv42Kl8Q
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