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Abstract— Social navigation is the capability of an au-
tonomous agent, such as a robot, to navigate in a “socially
compliant” manner in the presence of other intelligent agents
such as humans. With the emergence of autonomously navi-
gating mobile robots in human-populated environments (e.g.,
domestic service robots in homes and restaurants and food
delivery robots on public sidewalks), incorporating socially
compliant navigation behaviors on these robots becomes critical
to ensuring safe and comfortable human-robot coexistence.
To address this challenge, imitation learning is a promising
framework, since it is easier for humans to demonstrate the task
of social navigation rather than to formulate reward functions
that accurately capture the complex multi-objective setting of
social navigation. The use of imitation learning and inverse
reinforcement learning to social navigation for mobile robots,
however, is currently hindered by a lack of large-scale datasets
that capture socially compliant robot navigation demonstrations
in the wild. To fill this gap, we introduce Socially Compli-
Ant Navigation Dataset (SCAND)—a large-scale, first-person-
view dataset of socially compliant navigation demonstrations.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of
socially compliant, human-teleoperated driving demonstrations
that comprises multi-modal data streams including 3D lidar,
joystick commands, odometry, visual and inertial information,
collected on two morphologically different mobile robots—a
Boston Dynamics Spot and a Clearpath Jackal—by four
different human demonstrators in both indoor and outdoor
environments. We additionally perform preliminary analysis
and validation through real-world robot experiments and show
that navigation policies learned by imitation learning on SCAND
generate socially compliant behaviors. 1

I. INTRODUCTION

Social navigation is the capability of an autonomous agent
to navigate in a socially compliant manner such that it
recognizes and reacts to the objectives of other navigating
agents, at least somewhat adjusting its own path in response,
while also projecting signals that can help the other agents
reciprocate. Enabling mobile robots to navigate in a socially
compliant manner has been a subject of great interest recently
in the robotics and learning communities [1]–[5]. Towards
enabling this capability, demonstration data of socially com-
pliant navigation for mobile robots, such as the ones shown
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Fig. 1: A human demonstrator teleoperates the two robots,
following a socially compliant strategy (left- moving with
traffic, right- sticking to the right of the road) around human
crowds.

in Fig. 1, can be a valuable resource. For instance, such
demonstration information can be used to learn socially
compliant robot navigation using the paradigm of Learning
from Demonstrations (LfD) [6], [7] or understanding human
navigation in the presence of autonomous robots [8].

Datasets for social navigation, generally used for learning
and benchmarking, include data collected both in the real-
world [9] and in simulated environments [10], [11]. While
such datasets provide basic trajectories of the robots and hu-
mans, they either contain limited interactions in constrained,
orchestrated environments or restrict themselves to indoor-
only navigation scenarios. When collecting data in such
controlled settings [9], naturally occurring social interactions
including—but not limited to—following lane rules of a
country, yielding to pedestrians and vehicles, walking with
and against a crowd of people, and street crossing is not
captured. Additionally, the robots used for data collection
in previous social navigation datasets [9] tend to use a
simple controller for point-to-point navigation that does not
explicitly exhibit socially aware navigation.

Recently, imitation learning has emerged as a useful
paradigm for designing mobile robot navigation controllers
[12]–[15]. In this paradigm, the desired navigation behavior
is first demonstrated by an agent such as a human, the
recording of which is then utilized by an imitation learning
algorithm to imitate. This intuitive way of teaching a task
to a robot is also easy for non-expert humans since it only
requires providing demonstrations, instead of defining the
rules of the task itself, which may be hard to explicitly
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Fig. 2: Five example scenarios from SCAND showing the RGB image and below it the accompanying Lidar with the
monocular image from side camera on the Spot. From left to right, the scenarios have the tags “Street Crossing”, “Narrow
Doorway, “Navigating Through Large Crowds”, “Vehicle Interaction”, and “Crossing Stationary Queue.”

define for social navigation. Motivated by recent successes
of imitation learning in robot navigation, we posit that one
way to enable autonomous agents to navigate socially is
through learning from human demonstrations of socially
compliant navigation behavior. However, there is a lack of
large-scale datasets containing socially compliant navigation
demonstrations in the wild that can be utilized for imitation
learning.

To fill this gap, in this work, we introduce a dataset of
demonstrations for socially compliant robot navigation in the
wild. Our dataset contains 8.7 hours of human-teleoperated,
socially compliant, navigation demonstrations, specifically,
Velodyne lidar scans, joystick commands, odometry, camera
visuals, and 6D inertial (IMU) information collected on two
morphologically different mobile robots—a Clearpath Jackal
and a Boston Dynamics Spot—within the University of Texas
at Austin university campus. Comprising 25 miles in total
of 138 trajectories, Socially CompliAnt Navigation Dataset
(SCAND) is publically released2 and also contains labeled
tags of naturally occurring social interactions with every
trajectory. Additionally, we show that with SCAND, it is
possible to learn socially compliant local navigation policies
through imitation learning.

II. DATA COLLECTION PROCEDURE

In this section, we first describe the data collection pro-
cedure used in SCAND and outline the sensor-suite present
on both robots. We then describe the labeled annotations of
social interactions provided with every trajectory.

A. Collecting Data

To collect multi-modal, socially compliant demonstration
data for robot navigation, 4 human demonstrators—including
the first two authors of this work—navigate the robot by
teleoperation using a joystick. For each of the 138 trajectories
in SCAND, the human demonstrator walks behind the robot at
all times, maintaining on average two meters distance. Unlike
other datasets for social navigation [9], we do not restrict data
collection to a controlled, indoor environment or orchestrate
a social scenario for data collection. Instead, similar to the
JRDB dataset [8], we perform data collection in the wild

2www.cs.utexas.edu/∼xiao/SCAND/SCAND.html

in both indoor and outdoor environments. The two robots
are driven around the university campus on frequently used
sidewalks, roads, and lawns, and inside buildings, all with
people in the scene during peak hours of high foot traffic.
This includes data collected outdoors near the university’s
football stadium on two game days with high traffic public
crowds gathered near the arena. The Spot is driven at linear
and angular velocities in the range of [0, 1.6] m/s and
[−1.5, 1.5] rad/s, respectively, and the Jackal in the range
of [0, 2.0] m/s and [−1.5, 1.5] rad/s, respectively. Note that
these velocities are within the range of many people’s normal
walking speed.

Fig. 3 shows the sensors present on the Clearpath Jackal
and the Boston Dynamics Spot robots. Both robots have
in common a VLP-16 Velodyne laser puck publishing at
a frequency of 10 Hz, a 6D inertial (IMU) sensor at 16
Hz, and a front-facing Azure Kinect RGB camera at 20
Hz. In addition to these common sensors, the Jackal has
a front-facing stereo camera (20 Hz) and wheel odometry
(30 Hz), while the Spot has five monocular cameras on its
body (publishing at 5 Hz), that are placed as shown in Fig.
3. We utilize the Boston Dynamics APK to record the visual
odometry of its body frame and the joint angles of the legs
on the robot. SCAND also contains transforms between the
frames of each of the sensors relative to the robot’s body
for both robots. We utilize AMRL’s software stack [20] for
data collection from different sensors which we record in the
rosbag format [21].

Although we provide visual scene information in the
form of surround-view monocular images on the Spot, RGB
image from the front-facing Kinect camera, and 3D Velo-
dyne laser scans on both robots, since the focus of this
work is specifically on navigation, we do not provide any
labeled annotations for human detection or tracking. We
refer the reader to the JRDB dataset [8] which contains
detailed, high-quality annotations for solving perception-
related tasks. Instead, SCAND contains joystick commands
of linear and angular velocities executed by the demonstrator
while teleoperating the robot socially, along with rich, multi-
modal sensory information of the environment including
labeled annotations of 12 different social interactions in every
trajectory. Fig. 2 shows five example scenarios and their
associated tags.

www.cs.utexas.edu/~xiao/SCAND/SCAND.html


Dataset # Traj. Dist. (Km) Dur. (min) Sensors Nav. method # Robots Location
CoBot
[16] 1082 131 15600 2D Range Scanner, RGB-D Camera, Wheel

Odometry Autonomous 2 Indoors +
Outdoors

L-CAS
[17] 3 N/A 49 3D LiDAR Teleoperated 1 Indoors

NCLT
[18] 27 147.4 2094 3D LiDAR, RGB Camera, IMU, Wheel

Odometry, GPS Teleoperated 1 Indoors +
Outdoors

FLOBOT
[19] 6 N/A 27.5

3D LiDAR, RGB-D camera, Stereo Camera,
2D LiDAR, OEM incremental measuring

wheel encoder, IMU
Autonomous 1 Indoors

JRDB [8] 54 N/A 64
3D LiDAR, 2D LiDAR, Omnidirectional
Stereo Suite, RGB camera, RGB-D stereo

camera, 6D IMU
Teleoperated 1 Indoors +

Outdoors

THÖR [9] 600 N/A 60 3D LiDAR, Motion capture system,
Eye-tracking Glasses Autonomous 1 Indoors

SCAND 138 40 522
3D LiDAR, RGB-D Camera, Monocular

Camera, Stereo Camera, Wheel Odometry,
Visual Odometry

Teleoperated 2 Indoors +
Outdoors

TABLE I: Comparison of real-world datasets for robot navigation.

Tag Description # Tags
Against Traffic Navigating against oncoming traffic 22

With Traffic Navigating with oncoming traffic 74

Street Crossing Crossing across a street 34

Overtaking Overtaking a person or groups of
people 14

Sidewalk Navigating on a sidewalk 57

Passing
Conversational

Groups

Navigating past a group of 2 or more
people that are talking amongst

themselves
38

Blind Corner Navigating past a corner where the
robot cannot see the other side 6

Narrow
Doorway

Navigating through a doorway where
the robot waits for a human to open

the door
15

Crossing
Stationary

Queue
Walking across a line of people 6

Stairs Walking up and/or down stairs 22

Vehicle
Interaction Navigating around a vehicle 21

Navigating
Through Large

Crowds

Navigating among large unstructured
crowds 27

TABLE II: Descriptions of labeled tags contained in SCAND

B. Labeled Annotations of Social Interactions

We annotate each trajectory in SCAND with labels de-
scribing social interactions that occurred along the path. The
labels are in the form of a list of textual captions of social
interactions taking place in a trajectory, chosen from a set
of twelve predefined labels of social interactions observed in
SCAND. For the full list of labels, refer to Table II. We intend
the labels to be useful for future studies of specific scenarios
that occur during social navigation in the real-world.

Fig. 3: Sensors present on the wheeled Jackal and the legged
Spot robots. Along with this multi-modal sensor information,
SCAND also contains joystick commands issued during the
navigation demonstration.

III. ANALYSIS

In this section, we discuss preliminary analysis using our
dataset which show that navigation policies learned through
imitation learning using SCAND generates socially compliant
and safe navigation behaviors.

We apply the behavior cloning algorithm [22] to learn a
reactive local planner that predicts joystick action commands.
The local planner takes as its input past three LiDAR scans,
odometry information of the robot for each of the scans
with respect to the most recent observation and move base
global path information ten meters into the future. The local
planner predicts the next ten action commands (forward
velocity v and angular velocity ω) which is learned from
the joystick commands issued by the human demonstrator in
SCAND. To evaluate the learned local planner, we perform
a human subject study in the real world with a static
and dynamic environment as shown in Fig. 4. The human
subjects are asked to evaluate the social compliance and



Fig. 4: Evaluating the local planner agent trained using
Behavior Cloning on SCAND. Scenario on the left shows a
stationary human in the robot’s path and the scenario on the
right shows a human walking to the location of the robot.
The robot is evaluated on social compliance and safety as it
navigates to its goal position.

Fig. 5: Mean and standard deviation of scores assigned by
the fourteen human participants in the evaluation study for
the learned local planner.

safety of the robot, ranking from 1 (lowest) to 5 (highest).
Fig. 5 shows the responses of fourteen human participants.
On average, more humans felt the imitation learning agent
trained on SCAND was more socially compliant (SCAND
mean=4.39, sd=0.99; move base mean=2.86, sd=0.82) and
safer (SCAND mean=4.71, sd=0.70; move base mean=2.89,
sd=1.18) than the move base agent. The results for both
questions are statistically significant as tested by a One-Way
Analysis of Variance (ANOVA) (Safe F1,55 = 47.87, p <
0.001; Socially Compliant F1,55 = 38.67, p < 0.001). This
is expected since the move base agent is not designed to
exhibit social compliance.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we introduce the Socially CompliAnt Naviga-
tion Dataset (SCAND), a large-scale dataset of demonstrations
for mobile robot social navigation. SCAND contains 8.7
hours, 138 trajectories, 25 miles of socially compliant driving

demonstrations, collected on two morphologically different
robots. In addition to the multi-modal sensory data streams
from the two robots, SCAND also contains labeled annota-
tions of social interactions for all trajectories. We illustrate
the usefulness of SCAND by training a behavior cloning
agent on the demonstrations from SCAND and show that it
is possible to learn a socially compliant local planner for
mobile robot navigation. We further validate the performance
of the behavior cloned local planner through human trials
on two social navigation scenarios and show that the partic-
ipants perceived the imitation learning agent to be relatively
more socially compliant and safe, compared to a naive
move base agent. While we show here that the BC agent
was able to handle simple social navigation scenarios, better
imitation learning algorithms may be needed to handle more
sophisticated social navigation scenarios that are present in
SCAND. Although SCAND includes a wide variety of social
navigation scenarios, there may be novel interactions that
are less frequent. To improve generalizability of a learning
based approach to unseen situations, exploring representation
learning for social navigation with SCAND is a promising
future direction. Another interesting future research direction
is to explore Real-to-Sim transfer with SCAND and improve
parameterized simulated social navigation environments to
generate more realistic social interactions between virtual
agents, directly benefiting data hungry approaches such as
reinforcement learning.

ACKNOWLEDGEMENT

This work has taken place in the Learning Agents Re-
search Group (LARG) and Autonomous Mobile Robotics
Laboratory (AMRL) at UT Austin. LARG research is
supported in part by NSF (CPS-1739964, IIS-1724157,
NRI-1925082), ONR (N00014-18-2243), FLI (RFP2-000),
ARO (W911NF19-2-0333), DARPA, Lockheed Martin,
GM, and Bosch. AMRL research is supported in part
by NSF (CAREER2046955, IIS-1954778, SHF-2006404),
ARO (W911NF-19-2- 0333, W911NF-21-20217), DARPA
(HR001120C0031), Amazon, JP Morgan, and Northrop
Grumman Mission Systems. Peter Stone serves as the Ex-
ecutive Director of Sony AI America and receives financial
compensation for this work. The terms of this arrangement
have been reviewed and approved by the University of Texas
at Austin in accordance with its policy on objectivity in
research.

REFERENCES

[1] D. Helbing and P. Molnár, “Social force model for pedestrian
dynamics,” Physical Review E, vol. 51, no. 5, p. 4282–4286,
May 1995. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.
51.4282

[2] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” 2020.

[3] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” 2018.

[4] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance
in pedestrian-rich environments with deep reinforcement learning,”
IEEE Access, vol. 9, p. 10357–10377, 2021. [Online]. Available:
http://dx.doi.org/10.1109/ACCESS.2021.3050338

http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1109/ACCESS.2021.3050338


[5] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Prevention and resolution
of conflicts in social navigation – a survey,” 2021.

[6] S. Schaal, “Learning from demonstration,” in Proceedings of the 9th
International Conference on Neural Information Processing Systems,
ser. NIPS’96. Cambridge, MA, USA: MIT Press, 1996, p. 1040–1046.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889008001772

[8] R. Martin-Martin, M. Patel, H. Rezatofighi, A. Shenoi, J. Gwak,
E. Frankel, A. Sadeghian, and S. Savarese, “Jrdb: A dataset
and benchmark of egocentric robot visual perception of humans
in built environments,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, p. 1–1, 2021. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2021.3070543

[9] A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada,
K. O. Arras, and A. J. Lilienthal, “Thör: Human-robot navigation data
collection and accurate motion trajectories dataset,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 676–682, 2020.

[10] N. Tsoi, M. Hussein, J. Espinoza, X. Ruiz, and M. Vázquez, “Sean:
Social environment for autonomous navigation,” in Proceedings of the
8th International Conference on Human-Agent Interaction, 2020, pp.
281–283.
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