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Abstract— We develop algorithms for inferring long-term in-
tentions and safety constraints of agents in a multiagent system.
By safety constraints, we refer to the parameters of agents’
collision-avoidance with other entities in the environment which
could either be other agents or obstacles/walls. We model the
agent’s dynamics using a reactive optimization whose objec-
tive function captures the agent’s desire to follow a nominal
task-oriented control while its constraints capture collision-
avoidance behavior. Given this model, we develop two robust
mixed-integer programming algorithms that infer the task and
safety parameters using measurements that may contain noise.
To evaluate these algorithms, exhaustive numerical simulations
are performed on synthetic datasets using metrics such as
parameter estimation errors, average and final displacement
errors and computation time. These algorithms are also tested
and validated on a pedestrian dataset of human trajectories. We
infer each human’s desired velocity, its safety margins as well as
a conservativeness parameter that models the willingness of a
human to sacrifice optimality to maintain safety. We show that
the learned parameters capture the true underlying model by
rolling out the learned model and showing similarity between
the ground truth trajectories and the reconstructed trajectories.

I. INTRODUCTION

As robots are envisioned to co-exist with humans, frequent
close-proximity interactions amongst robots and humans
are inevitable. One critical challenge in programming the
behavior of robots around humans is ensuring that the
robots’ motions are safe. This is all the more pressing when
the underlying dynamic models of humans are unknown.
Hence, it is necessary to develop methods for inferring the
dynamics of these agents so that the control engineer can
use those models to predict future behaviors of other agents
for generating safe robot motions.

In this paper, we consider the problem of dynamics infer-
ence for a group of heterogeneous agents such as pedestrians.
The objective is to identify a set of behavior-related parame-
ters for each agent’s dynamics model that describes their (i)
long-term intention (such as goal, desired velocity etc.) and
(ii) collision avoidance behavior around other agents or walls
(e.g. underlying safety margin, aggressiveness etc). From
the perspective of an observer watching these agents, this
inference problem is challenging because the motion that the
observer watches comes through the filters of goal-directed
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behavior and safety combined. Because of this, the observer
cannot tell the extent to which safety constraints manifest
in the agent’s motion. Therefore, the observer must learn the
safety margins of each agent as well to perform this dynamics
disaggregation.

To address this challenge, we take recourse to control
barrier functions based quadratic programs to model the
dynamics of each agent [1]. This model captures each agent’s
intent to follow a nominal task-oriented plan as closely as
possible unless this plan causes the agent to come too close
to another agent or a wall. Additionally, it also captures the
aggressiveness of an agent i.e. the extent of its unwillingness
to sacrifice optimality for attaining collision-free motions.
Finally, it also models cooperation among different agents
to achieve collision-free behavior. We develop two mixed-
integer quadratic program (MIQP) algorithms that learn
the parameters of this model from the agents’ trajecto-
ries. We explicitly consider safety constraints with other
agents and obstacles/walls. Our proposed algorithms are
decentralized, robust to model mismatch and do not require
long training times (we show empirical results to support
these claims). After validating these algorithms on several
simulated datasets, we evaluate them on a pedestrian dataset
called THöR [2] that contains human motion trajectories
recorded in a controlled indoor experiment at Örebro Univer-
sity. These trajectories exhibit social interactions that occur
in populated spaces like offices, thus making it suitable for
evaluating our algorithms. Our results show that the learned
parameters capture pedestrian dynamics accurately which we
demonstrate by showing low ADE and FDE values.

Our work is most closely related to physics-based ap-
proaches [3] for modeling interactions between heteroge-
neous agents in addition to each agent’s self-motivated
dynamics. In this domain, the social force (SF) model [4],
[5] is widely used to describe attractive forces from a goal
with repulsive forces from other agents and obstacles. In [6]
a sparse topological map of the dynamic environment is
summarized consisting of varying state-destination pairs. The
goal is inference by comparing the maximum likelihood to
the state-destination pairs. In [7] SF-based interaction models
are parameterized, and the parameters are learned offline.
The newly acquired observations are then classified to the
closest behavior. For human-agent interactions in a crowded
environment, [8] proposed a method to classify each human
as aware or not aware to the agent based on visual cues,
to describe the sources of the repulsive force the agent
receives from the dynamic environments. While social forces
approaches consider perpetual and long-range repulsions



from other agents, our modeling choice automatically filters
out agents far away from the ego agent in the ego-agent’s
dynamics. Additionally, our chosen model adds repulsions
from only those agents/walls in the ego agent’s dynamics
that fall in the way of ego agent en-route to its goal, i.e. it
implicitly captures directional ‘local gaze’.

The outline of this paper is as follows. In section II,
we describe our model of the dynamics each agent and
pose the task + safety constraint inference problem. In
section III, we propose our MIQP inference algorithms based
on stationarity-residual and predictability-loss minimization.
In section IV, we validate these algorithms on synthetic
data sets, compare them using parameter inference and
trajectory reconstruction errors and evaluate their robustness
to measurement noise. In section V, we show the results of
our algorithms on the THöR dataset. Finally, we conclude in
section VI with directions for future work.

II. MULTIAGENT SAFE TASK-BASED CONTROL AND
INFERENCE PROBLEM

A. Agents’ dynamic model

We model each agent in the system as a single integrator
that is velocity-controlled. Suppose there are a total of NA+1
agents in the system. Additionally, let their be NO obstacles
(assumed polytopic). Let the position of the agents be xi ∈
R2 and their velocities be ui ∈ R2 ∀i ∈ {1, · · · , NA + 1}.
We assume that their dynamics are given by

ẋi = ui ∀i ∈ {1, · · · , NA + 1} (1)

To keep the discussion simple, we focus on one agent located
at x. This agent has a primary task and we assume it can
accomplish this task by using a reference control ûθ in (1).
We we represent this control as

ûθ(x) = C(x)θ + d(x). (2)

Here θ are the parameters capturing the task of that agent and
are in general different for each agent. C(x),d(x) are some
task oriented basis functions. This representation is general
enough to capture elementary tasks such as (a) reaching a
goal position and (b) maintaining a constant velocity.

In addition to performing the task, the ego agent must
have a mechanism to maintain a safe distance, say Ds with
the remaining NA agents and NO obstacles. To combine
this safety requirement with task-satisfaction, the ego robot
solves a QP that computes a controller closest to ûθtask

(x)
and satisfies NA +NO safety constraints as follows:

ẋ = u∗ = argmin
u

∥u− ûθ(x)∥2

subject to
[
AA

AO

]
︸ ︷︷ ︸

A

u ≤
[
bAγ,Ds

bOγ,Ds

]
︸ ︷︷ ︸

b

(3)

Here AA ∈ RNA×2, bA ∈ RNA are defined so that the jth

Fig. 1: Sample trajectories produced by (3) with one rectan-
gular obstacle for different values of γ. Increasing γ makes
the trajectory follow the reference controller more closely.

row of AA and the jth entry of bAγ,Ds
are

aT
j := −∆xT

j = −(x− xo
j)

T (4)

bj := γ(
∥∥x− xo

j

∥∥2 −Ds
2) ∀j ∈ {1, 2, . . . , NA + 1}\i

(5)

Similarly, AO ∈ RNO×2, bO ∈ RNO are defined such that
the ith row of AO and the ith entry of bγ,Ds are

aT
i := −(x− yO

i )
T (6)

bi := γ(
∥∥x− yO

i

∥∥2 −Ds
2) ∀i ∈ {1, 2, . . . , NO} (7)

where yOi is the point on obstacle Oi closest to the agent’s
instantaneous position x(t). Lastly, γ > 0 is a hyperparam-
eter unique to each agent. Fig. 1 shows example trajectories
computed by this model for an agent with one collision
avoidance constraint relative to the rectangular obstacle. The
reference control is û(x) = −kp(x−xd). To get an intuitive
understanding of γ, we conducted several simulations with
increasing values of γ keeping Ds,x0,xd and kp fixed. It
is evident that increasing γ makes the trajectory follow the
nominal plan û(x) more closely while still maintaining Ds

relative to the obstacle.
Going forward, we will assume that each agent in the mul-

tiagent system uses (3) as its underlying dynamic model. The
task+constraint parameters {θ, γ,Ds} are what distinguish
one agent from another. There are several reasons in favor
of using (3) as the model:

1) The nominal control ûθ(x) represents the agent’s pre-
ferred plan should there be no other agents. This repre-
sents the self-motivated dynamics of that agent. Thus,
having an optimization model the dynamics automati-
cally encourages the agent’s intent to follow this plan
as much as possible while also ensuring that safety is
respected if and when other agents show up.

2) This model implicitly captures the ‘local gaze’ of the
ego agent. In our prior work [9], we showed that for
the goal reaching task using (3), agents that do not lie
in the way of the ego agent en-route to its goal do
not influence its dynamics i.e. they lie outside its ‘local
gaze’. Thus, this model then automatically filters out
agents far away from the ego agent that don’t interfere
with the ego’s task.
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B. Task + Safety Behavior Inference Problem Formulation

Before stating the inference problem for the multiagent
system, we first state all assumptions on the observer’s
knowledge:

Assumption 1. The observer knows the task functions
C(x),d(x) of ûθ(x).

Assumption 2. The observer knows the form of safety
constraints AA, bAγ,Ds

, AO, bOγ,Ds
.

Definition 1 (Multiagent Behavior Inference). The ob-
server’s problem is to infer parameters {θ, γ,Ds} for each
agent by monitoring its position x(t) and the positions of
other agents xo

j(t) ∀j ∈ {1, 2, · · · , NA} over some time.

The observer will use a batch of K signal-response pairs

i.e.
((

x(k), {xo
j(k)}

NA
j=1

)︸ ︷︷ ︸
signal

, u∗(k)︸ ︷︷ ︸
response

)
∀k ∈ {1, 2, · · · ,K}

to compute an estimate of θ, γ,Ds. Next, we propose our
algorithms to solve this problem using MIQP.

III. MIQP-BASED ROBUST INFERENCE ALGORITHMS

The general approach for inferring θ, γ,Ds is to pose an
empirical risk minimization algorithm that uses a reasonable
heuristic as a loss. We propose two algorithms: the algorithm
in section III-A considers the prediction error as a heuristic
while the algorithm in section III-B considers a variant of
the KKT loss proposed in [10] as a heuristic. Both these
algorithms rely on the KKT conditions of (3). Thus, we state
these conditions first before presenting these algorithms. Let
(u∗,λ∗) be the optimal primal-dual solution to (3). The KKT
conditions are [11]:

1) Stationarity: u∗
θ = ûθ(x)− 1

2A
T (x)λ∗

2) Primal Feasibility: A(x)u∗ ≤ bγ,Ds
(x)

3) Dual Feasibility: λ∗ ≥ 0
4) Complementary Slackness:

λ∗ ⊙
(
A(x)u∗ − bγ,Ds

(x)
)
= 0

Complementary slackness can be re-posed with an equivalent
formulation by using the big-M approach [12]. This is done
by augmenting the lower bounds 0 ≤ bγ,Ds

(x) − A(x)u∗

and 0 ≤ λ∗ with artificial upper bounds as follows:

0 ≤ bγ,Ds
(x)−A(x)u∗ ≤ Mz

0 ≤ λ∗ ≤ M(1− z) (8)

Here z ∈ {0, 1}NA+NO are Boolean variables and M is a
large number chosen as a hyperparameter. The Boolean vari-
ables z are also unknown and will be learned as part of the
inference problem in the next section. Given these conditions,
we are ready to develop the first inference algorithm.

A. Predictability Loss MIQP

The observer assumes that each agent uses (3) as the
underlying model. Akin to this model, the observer poses a
copy problem in which he treats θ, γ,Ds as tunable knobs.
These can be tuned until the predicted velocities computed

by the solving the copy problem match with the measured
velocities. This can be done by solving:

θ̂, γ̂, D̂s, {ûk}Kk=1 = argmin
θ,γ,Ds,{uk}K

k=1

K∑
k=1

∥uk − umeas
k ∥2

such that uk solves (3) ∀k ∈ {1, · · · ,K}
(9)

The cost in (9) is the sum of the deviations of the predicted
velocities uk from the measured velocities umeas

k . This is
known as the predictability loss [13]. Naturally, it makes
sense to minimize this loss only if the predicted velocities
solve (3) which is posed as a constraint in (9). This is a
bi-level problem which can be computationally difficult to
solve. We convert this to a single level problem by replacing
the inner problem with its KKT conditions:

θ̂, γ̂, D̂s,{ûk}Kk=1, {λ̂k}Kk=1, {ẑk}Kk=1, {δ̂k}Kk=1 =

argmin
θ,γ,Ds,{uk}K

k=1,

{λk}K
k=1,{zk}K

k=1,{δk}K
k=1

K∑
k=1

∥uk − umeas
k ∥2 + ρ

K∑
k=1

∥δk∥2

subject to
0 ≤ bγ,Ds

(xk)−A(xk)uk ≤ Mzk

0 ≤ λk ≤ M(1− zk)

zk ∈ {0, 1}NA+NO

− δk ≤ uk − ûθ(xk) +
1

2
AT (xk)λk ≤ δk

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(10)

The first term in the cost is the predictability loss and
the second penalizes the slack variables which allow for
violations in the stationarity. The constraints are linear in
θ, γ, γD2

s , {uk,λ, zk, δk}Kk=1. Since {zk}Kk=1 are Boolean,
the overall problem is an MIQP.

B. Stationarity Loss MIQP

Another heuristic that can be used to solve the inference
problem is the stationarity loss. This loss quantifies the
residual of the stationarity condition evaluated on observed
positions and velocities:

lStat.
k =

∥∥∥∥umeas
k − ûθ(xk) +

1

2
AT (xk)λk

∥∥∥∥2 (11)

This residual is quadratic in both θ and λk. Using K
observed signal-response pairs, the observer poses an em-
pirical risk minimization problem that queries for θ, γ,Ds,
{λk, zk}Kk=1 which minimize the total stationarity loss:

θ̂, γ̂, D̂s, {λ̂k}Kk=1, {ẑk}Kk=1 = argmin
θ,γ,Ds,

{λk}K
k=1,{zk}K

k=1

K∑
k=1

lStat.
k

subject to
0 ≤ bγ,Ds

(xk)−A(xk)u
∗ ≤ Mzk

0 ≤ λk ≤ M(1− zk)

zk ∈ {0, 1}NA+NO

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(12)
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TABLE I: Evaluation with perfect measurements
`````````Algorithm

Metric ADE [m] FDE
[m]

Time
[s]

Stat. Loss MIQP 0.0012 ±
0.0014

0.044±
0.0534

8.17 ±
0.49

Pred. Loss MIQP 0.0012 ±
0.0014

0.044±
0.0539

1.63 ±
0.067

Pred. Loss (warm start) 0.0012 ±
0.0014

0.044±
0.0534

1.61 ±
0.06

TABLE II: Evaluation with noisy measurements
`````````Algorithm

Metric ADE [m] FDE
[m]

Time
[s]

Stat. Loss MIQP 0.0476 ±
0.1047

0.806±
1.432

8.008±
0.0827

Pred. Loss MIQP 0.3734 ±
0.3718

12.90±
12.01

1.6 ±
0.082

Pred. Loss (warm start) 0.3317 ±
0.3461

9.67 ±
10.281

1.592±
0.048

Since the cost is quadratic and constraints are linear in
(θ, γ, γD2

s , {uk,λk, zk}Kk=1), this problem is also an MIQP.

IV. RESULTS: VALIDATION ON SYNTHETIC DATASETS

Before testing these algorithms on the human trajectory
dataset, we evaluate them by on a simulated dataset. The
nominal task for the agent is to follow a constant velocity
vd. We generated trajectory data of a single agent using
(3). We modeled the environment after the map in the
THöR dataset by manually converting the walls and obstacles
into polytopes. The observer’s problem is to infer vd, γ,Ds

of this agent from the obtained trajectories using (9) and
(12). If we model the task reference control as fixed-speed
goal-directed behavior, the resultant task control is û =
−sd

(x−xd)
∥(x−xd)∥ because this control is not linear in sd,xd as

required in (2). Hence, we chose to model it as a constant
velocity control û = vd.

To test the robustness of these algorithms, we consider
two scenarios: scenario (1) with no noise in the measured
velocities and in scenario (2) we add zero mean Gaussian
noise with 2m/s standard deviation to the velocities. This
level of noise reflects the maximum noise we expect in real
human motions. We compare the performance of (9) and
(12) using the ADEs and FDEs of the trajectories generated
using the inferred parameters relative to the ground truth
trajectories. We also try to see if there is any benefit of warm-
starting the predictability loss MIQP (9) with the solution
returned by the stationarity loss MIQP (12). To assess
repeatability, we conduct ten simulations with a randomly
chosen initial position of the agent. The hyperparameter ρ
for the predictability loss MIQP was chosen systematically
by tuning performance on a validation dataset. Table I shows
the ADEs and FDEs averaged over ten runs with noiseless
demonstrations while Table II shows these errors with noisy
demonstrations. It is evident that while both solvers give ac-
curate reconstruction when the demonstrations are noiseless,
it is the stationarity loss MIQP (12) which exhibits a great
amount of robustness to measurement noise.
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Fig. 2: Comparison between reconstructed trajectories with
learned parameters (red) and ground truth trajectories (black)
on four scenarios in THöR dataset. X,Y axis in meters.

V. RESULTS: VALIDATION ON HUMAN DATASETS
Next, we evaluate these algorithms on the trajectories

from the THöR dataset [2]. Due to the constant velocity
assumption, we chose 15 scenarios from the dataset with
selected time intervals of trajectories over which the constant
velocity assumption was valid for most of the pedestrians.
Parameter inference is then conducted on each pedestrian
independently using our proposed algorithms.

In the interest of space, we only report results obtained
using the stationarity loss MIQP. Fig. 2 shows these results.
The black lines are ground truth demonstrations for four
sample scenarios involving upto seven humans. We ran (12)
on them to infer γ,Ds,vd of each human individually.
Then, we used these parameters to roll out (3) and obtained
trajectories shown in red. These trajectories almost overlap
with the given demonstrations showing that the learned
parameters capture the underlying behavior. In future work,
we will consider richer tasks as well as allow for γ,Ds to be
time-varying to capture time-varying behavior of the humans.

VI. CONCLUSIONS

In this paper, we considered the problem of simultaneously
inferring task and safety constraint parameters of individual
agents of a multiagent system. We modeled the agents using
control barrier functions and developed the predictability
loss MIQP and the stationarity loss MIQP to solve the
inference problem. We demonstrated how accurate estimates
of underlying parameters can be reconstructed using these
algorithms on a both a single-agent scenario and validated
them on a real human dataset.
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