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Abstract— Automated analysis of people motion, particularly
motion flow estimation, is of great importance to mobile
navigation. Robots should be able to foresee the future motion
of people and adjust their path accordingly in order to avoid
situations with high risk of collision. This work reports on
the progress towards an approach combining information from
external video camera frames, what we call partial flows, to
estimate people motion around the environment - a step towards
human-aware path planning. Preliminary validation is done in
a simplified simulated environment.

I. INTRODUCTION
The use of mobile robots in both indoor and outdoor

environments, such as in airports, malls, offices, etc., has
been increasing over the last few years. Such has been also
the case for the presence of cameras in such environments.
The integration of both, however, has not yet been completely
addressed by the literature.

Combining external cameras with mobile robots is advan-
tageous in bringing a different level of awareness to robots
during navigation. A robot could, for example, plan paths
that avoid high density areas before any person has even
been detected by its own sensors.

Unlike most state-of-the art methods that rely exclusively
on robot internal sensors, this work adds partial external in-
formation about how the environment is populated wherever
camera coverage is available. In a more general sense, our
approach focuses on extracting information about the flow
of people from each camera placed in the environment to
estimate future human motion. An example is shown in Fig.
1. Preliminary validation is done in simulated experiments.

A. State of the art

From static or mobile platforms, at a local or a global level,
people motion analysis has been investigated in literature
for various reasons including, behavior understanding, event
detection, motion detection etc. Surveys about crowd analysis
and estimation techniques are available in [1], [2].

Towards motion prediction, both [3], [4] have used Long-
Short Term Memory (LSTM) that enable learning human
motion behavior from demonstrated data, for crowd motion
prediction in cluttered environments. Combining crowd anal-
ysis and path planning, in [5] a technique was presented
for navigation in dense crowds that combines trajectory
prediction with Deep Reinforcement Learning-based colli-
sion avoidance. In [6], a method is described for environ-
ment feature extraction along with Inverse Reinforcement
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Fig. 1: Two out of three cameras positioned on the envi-
ronment capture the motion of two people. Although more
people can be hidden outside camera view, this "partial"
observation of the flow of people can still allow for human-
aware robot path planning with better situational awareness.

Learning (IRL) for socially adaptive navigation and path
planning, while [7] introduced a social navigation system for
human-populated and interactive scenarios using a method
for clustering humans. However, these methods rely solely
on robot internal sensors. Moreover, some have focused on
cases where the observability of the environment is limited;
[8] addressed the problem of inferring the human occupancy
in the space around the robot i.e. blind spots, whereas [9]
used IRL for path planning when limited knowledge of the
density and flow of people in the environment is available.
Our approach relies on using external cameras embedded
in the environment to predict motion of people, providing
additional situational awareness for future robot decision
making.

In [10], smart video surveillance systems were investigated
with a focus on people tracking from aerial video frames,
crowd granularity analysis, and group event identification.
While their method established a correspondence between
consecutive frames. Our work focuses on estimating the
partial motion flow on distinct regions and establishing a
temporal relationship among them.



Fig. 2: Architecture of modules being developed for our
approach and main components for its functionality. The
"camera-robot" correspondence [11], autonomously map all
camera pixels to the robot global coordinate space.

II. Partial motion flow representation

In order to achieve a human-aware robot navigation, it is
essential to analyze the flow of people occurring in the areas
the robot might visit. For that, videos from multiple cameras
embedded in the environments are used. Each camera covers
a region of the environment, we call the traffic in that area
a partial flow F . To calibrate these cameras, a method for
mapping camera images to robot world model is used.

A. Autonomous mapping of camera to robot frame

In our previous work [11] (under review)1, a concept for
controlling a robot directly through camera video feeds has
been proposed. It is based on an approach for autonomous
camera calibration based on the transformation between
image pixels and robot coordinates using homography and
deep learning. In other words, homographies for a bidirec-
tional correspondence between camera space and the global
coordinate space of the robot are autonomously calculated.

The concept was implemented and validated in simulated
environments as well as real world conditions where the
center of the robot was detected in the camera images using
a deep learning robot detector, then associated with the robot
position on its global coordinate to perform the calibration.

1For demonstration of [11], see https://youtu.be/rZ1yFMNobSQ

Fig. 3: A person moving towards the camera (left) with its
partial flow captured and represented (right) as the black tile
with the number of people with that particular flow type
inside. Orientation is in the robot global coordinate space
not the camera space. Let V0 ≈ 0 and V1, V2, V3 respectively
represent 0.25, 0.8, 1.35 meters per second.

B. Feature space for partial flow
A partial flow is a combination of the previously observed

flow in nearby cameras and the flow that is not temporally
related to the appearance of people in other cameras. Each
flow is represented by a feature vector fc encoding number
of people and their distribution of speed and direction.

In contrast to [6] who deals with people in terms of
density and prioritize their relative position with respect
to the robot, our approach focuses rather on the number
of people and their motion inside regions where camera
coverage is available, thus, the immediate neighborhood of
the robot is not as relevant in this step. More specifically, we
define 8 direction intervals ranging from 0° to 360° and 3
velocity intervals V1, V2 and V3 ranging from the maximum
velocity observed to V0 ≈ 0m/s when the person is standing
still. That yields in a 8 × 3 + 1 dimensional feature vector
for each camera flow represented as shown in Fig. 3 (right).

III. Predicting near future partial flows
Consider a robot that wishes to efficiently translate from

its current position to a goal position while accounting for
people’s motion in the environment. The robot is able to
assess current partial flows calculated from every camera
connected to the media server. However, as the robot plans
a path and proceeds to execute it, the flow of people could
already have changed.

As such, our objective is to estimate how the current flow
of people will be in the future, based solely on current flows,
after t seconds have elapsed.

A. Partial Flow History
As shown in Fig. 2, the partial flows for each camera are

continuously being saved. In order to avoid large differences
in the number of samples per camera, due to distinct frames
per second and other factors, flows are saved once every 2.5
seconds whenever a person has been detected in any camera
for more than three consecutive frames in the last 30 seconds.

Although date information is not currently included in our
experiments, usage in real world conditions would benefit
from a time series representation in order to more directly
represent reoccurring periods, such as: holidays, weekends
and business days.

https://youtu.be/rZ1yFMNobSQ
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(a) Input feature vector with partial flows
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(b) Output feature vector with regressor.

Fig. 4: Comparison between input feature vectors and output
predictions. Each color indicates a person not feature value.

B. Learning from observations

Let C represent a set of cameras connected to the media
server and ci ∈ C the camera of interest. The partial flow is
calculated, in practice, in order to mitigate the impact of
noise, using the mean partial flow observed over a time
interval [t − m; t] where t ∈ N is the current time and
m ∈ N+ the interval for observation.

Our objective is to estimate, for ci, the mean partial
flow over of n seconds in the future as if observed over
m seconds. Formally, the predicted value should be in the
interval [t+n; t+n+m] where n ∈ N. This work assumes
n = 10 and m = 20.

The mean partial flow history from every camera c ∈ C
are used as predictors to estimate the future flow of people in
camera ci in the future interval. For such prediction, in our
simplified simulated scenario, an ordinary linear regressor2 is
tentatively used for training, where the to-be-predicted value
is calculated from the partial flow history.

IV. PRELIMINARY SIMULATED VALIDATION

This section evaluates partial flow estimation in a simpli-
fied scenario. For our tests, a total of three people are set to
travel the environment in pre-determined trajectories that are
individually reset and repeat themselves ten seconds after a
person arrives at their goal. As the time for each person
to complete their trajectory is different, several distinct
combinations of people appearing at each camera can be
observed. Examples of people moving through the cameras
in order to calculate partial flows are shown in Fig. 5

Preliminary results of the partial flow predictor are shown
in Fig. 4, where, it successfully predicted future partial
flows using current partial flows as predictors, however, for
conclusive evidence more stochastic simulations are required.

2Deep learning regression is being considered for learning from
timeseries-based real world experiments with people.

(a) Camera 1 where a person
walks outside any camera view

(b) Camera 3, one person walks
to camera 2 and another to 1

Fig. 5: Viewpoint of the cameras on our experimental setup

V. CONCLUSIONS

This work explored the concept of combining video
streams from in world cameras to assist on the estimation of
current and future flow of people in the environment. This
work is only partially complete and still under development.
Our current focus is on a more quantitative experimental
validation and designing extensive real world experiments.

The objective of obtaining current and future partial flow
is using it to build a human-aware costmap for path planning
in a future work. As regions that lack camera coverage would
not have an associated cost, an undesirable outcome, the
challenge becomes estimating, from just partial flows, the
motion of people throughout the whole environment.
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