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Abstract—For the most comfortable, human-aware robot
navigation, subjective user preferences need to be taken into
account. This paper presents a novel reinforcement learning
framework to train a personalized navigation controller along
with an intuitive virtual reality demonstration interface. The
conducted user study provides evidence that our personal-
ized approach significantly outperforms classical approaches
with more comfortable human-robot experiences. We achieve
these results using only a few demonstration trajectories from
non-expert users, who predominantly appreciate the intuitive
demonstration setup. As we show in the experiments, the
learned controller generalizes well to states not covered in
the demonstration data, while still reflecting user preferences
during navigation. Finally, we transfer the navigation controller
without loss in performance to a real robot.

I. INTRODUCTION

Robot personalization to specific user-preferences will
become increasingly important, as robots find their way into
our everyday life. Harmonic human-robot interactions build
trust and satisfaction with the user [1], whereas negative
interaction experiences can quickly lead to frustration [2]. A
cause for negative user experiences can be algorithms that
do not reflect personal preferences.

Where mobile household robots navigate in the vicinity
of a human, basic obstacle avoidance approaches fail to
capture individual user preferences. While collision avoidance
is undoubtedly crucial during navigation, the navigation policy
should furthermore be human-aware and take into account
user preferences regarding proxemics [2] and privacy, compare
Fig. 1 (bottom). Subjective preferences may vary depending
on the environment [3], [4] and social context, e.g., navigation
preferences could reflect in the robot’s approaching behavior
[5], or always driving in front or behind the human. In addition
following a certain speed profile and maintaining a certain
distance from humans and other obstacles in the environment
might play a role. The resulting navigation objective for the
robot is to reach the navigation goal, not necessarily by only
following the shortest path, but also by taking personal robot
navigation preferences into account.

Extensive research has been done on both human-aware
navigation [6] and on robot personalization [1], [7], but
surprisingly, very few can be found at the intersection
of both disciplines. Recent advances in learning socially-
aware navigation behavior from human demonstrations have
been made with inverse reinforcement learning, where the
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Fig. 1. Top: We propose a virtual reality (VR) interface to intuitively
demonstrate robot navigation preferences by drawing trajectories onto the
floor with a handheld controller. Bottom: User study survey results on
the importance of personalized navigation behavior. Participants strongly
expressed their preference for personalization of robot navigation behavior,
even at the possible cost of longer trajectories.

parameters of a proxemics-encoding reward function were
inferred [8]. Limited by the initial shaping of the reward
function [9], such approaches lack the ability for navigation
style personalization beyond the scope of the reward function.
Similar drawbacks hold for learning or inferring cost-maps
[10], [11]. For smooth navigation, reinforcement learning (RL)
based continuous control has lead to promising results on
mobile robots [12], [13]. Furthermore, off-policy RL methods
can be complemented with demonstration data to greatly
improve learning speed on a given task, even outperforming
the resourcefulness of the original demonstrations [14].
However, RL robot navigation policies learn most efficient
trajectories to the goal. These trajectories do not necessarily
reflect the original demonstration behavior, which contains
user preferences. To more precisely imitate behavior from
demonstrations, behavioral cloning (BC) can be used [15].
However, the final policy is limited by the quality and amount
of demonstration data [16]. The dataset would need to cover
most of the state space to generalize fluently in unseen
environments. This poses a problem, as human demonstrators
can only provide limited amounts of demonstration data due
to their finite patience [17]. The question crystallizes, how do
we efficiently record personal preferences and teach them to
the robot, without being limited by the quality and quantity
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Schematic representation of the used architecture. a) Demonstration trajectories are drawn by the user and fed into the demonstration buffer.

b) A TD3 reinforcement learning architecture with an additional behavioral cloning (BC) loss on the actor trains a personalized navigation policy for
the human-robot interaction with continuous control. The learned policy is then evaluated in VR and subsequently transferred to a real robot. ¢) The
robot-centric state space captures the vicinity and orientation of the human and the obstacles as well as the goal direction.

of demonstrations.

In order to solve the aforementioned challenges, we
propose a novel navigation learning approach together with
a virtual reality (VR) interface to intuitively demonstrate
robot navigation preferences by drawing trajectories onto the
floor with a handheld controller, see Fig. 1. Importantly, the
interface does not require expert-level knowledge on robotics,
facilitating personalized navigation to a wide range of users.
Our demonstration process is time-efficient, as only few
demonstrations are required. The demonstrations are leveraged
to successfully train a personalized human-aware navigation
controller, by combining deep reinforcement learning and
behavioral cloning. We show that our navigation policy closely
reflects user preferences from only a few demonstrations.
But at the same time, it generalizes to unseen states. In an
extensive user study, we evaluate the personalized navigation
behavior against classical navigation approaches both in VR
and on a real robot.

The threefold main contributions of our study are:

« A VR demonstration interface for teaching navigation
preferences to robots intuitively.

o Learning a user-personalized, context-based navigation
policy based on the combination of RL and BC.

o An interactive user study recording user specific naviga-
tion preferences, evaluating both the presented interface
and learned personalized navigation policies.

II. REINFORCEMENT LEARNING FROM DEMONSTRATIONS

We adapted a twin-delayed deep deterministic policy
gradient (TD3) architecture consisting of an actor and two
critic networks [18]. TD3 was chosen for two reasons: i) It
has a continuous action space allowing smooth robot control
and ii) it is off-policy, thus is a perfect candidate for use with
demonstration data. The actor network outputs two continuous
robot control commands, i.e., forward and angular velocity.
We introduce two modifications to classic TD3, similar to
Nair et al. [19]: i) a behavioral cloning loss on demonstration
data for the actor network and ii) a separate buffer to hold
demonstration data, see Fig. 2.

A wheeled robot that has a local navigation goal navigates
in the vicinity of a single human. A visualization of our robot-

centric state space capturing the human pose, orientation and
obstacles is shown in Fig. 2c. All of those parameters can
play a role for the robot navigation preferences of the user,
as they encode proxemics, the human’s field of view and
relative positioning in the room. We assume that the positions
and orientations of the human, the robot, and all obstacles
are known. The functionality of our approach is proven for
a single human in the vicinity of the robot, however, it is
expandable to more than one person.

We aim to teach the user-specific navigation preferences
not by complex reward shaping, but only via demonstration
data. Consequently, we keep the reward as sparse as possible,
besides basic collision penalties and goal rewards: r =
Teollision T T'goal + Ttimeout- Upon collision with the human or
an obstacle reonision = —9. When the goal is reached, we
provide rgo = +5 exclusively in the demonstration data.
This is to boost the value of demonstration-like behavior over
more efficient, shortest-path navigation behavior. Inefficient
actions that lead to an episode timeout result in rmeou = —g
if episode timeout (n > Ng,). The rewards are 0 in all other
cases, respectively.

III. DEMONSTRATION AND TRAINING ENVIRONMENT

We propose a novel VR demonstration setup, where the
user teaches the robot personal navigation preferences in a
virtual reality environment, see Fig. 2a.

1) Simulator and Robot: Our robotic platform is the
Kobuki Turtlebot 2. As a VR and physics simulator we use
Pybullet [20].

A key challenge in using demonstrations for reinforcement
learning is bridging the gap between the agent’s and the
demonstrator’s state space. Given a desired forward velocity
v, we analytically calculate action commands along a demon-
stration trajectory, so that the robot follows discrete segments
(Ad, Ax) along a trajectory by executing successive actions
calculated at the control frequency f. By integrating the
forward and angular velocities v and w over time ¢t = %,
we can derive the relation 7 = ﬁ—g for the finite distance
Ad = vAt and angle Aa = wA(L.

2) Collecting and Processing Demonstration Trajecto-
ries: We use the following steps to process raw demonstration
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a) The demonstrated robot navigation preference trajectories of two participants A and B are shown for different human position-orientation

pairs (color-coded). Note the wall-following preference of user B, whereas user A prefers a smooth curve navigation style. b) The personalized controller
successfully learned to reflect the individual user preferences. Note that when no specific side preference is given as in the demonstrations in the corridor,
the controller reproduces trajectories mainly on one side. We evaluated our approach against ¢) the social cost model and d) the Dynamic Window Approach.
A quantitative comparison of the different approaches reveals e) a higher relative path length (normalized by linear distance) and f) a higher preferred
minimum distance. g) The increased path area for our controller (between the learned trajectory and linear distance) also points to a general preference for
earlier deviation from the shortest path in favor for more comfortable trajectories.

trajectories into state-action pairs (s, at, 7, St+1) contained
in the demonstration buffer:

1) In VR, a user draws a trajectory using the handheld
controller, emitting a beam of light. The analogue
trigger on the controller backside allows to control the
robot speed linearly in the range from vy, = 0.1ms™!
t0 Umax = 0.25 m s~ 1 at the drawing location.

2) The drawn trajectory is interpolated and smoothed with
a 2D spline, parameterized by k € [0,1]. Also, the
speed information is spline-interpolated.

3) Based on the speed along the spline v(k), we consecu-
tively extract the locations at which the robot receives
a new control command, using Ad = v(k)At.

4) Given v(k) for all control command locations, the
corresponding angular velocities w are calculated.

5) The robot is placed and oriented according to the
trajectory’s starting point.

6) Successively, the control command tuples a; = (v¢, wy)
are executed and the robot follows the trajectory.

7) Before and after executing an action a;, we record the
corresponding states sy, S;41 and the reward 7 ;.

8) Finally, all state-action-reward pairs (s¢, at, S¢4+1,7t+1)
are stored in the demonstration buffer.

We use data augmentation (N, = 15) to increase the data
output from a single demonstration trajectory by slightly
shifting the start position, while preserving its original
character (max(Ad) = 5cm < environment scale).

IV. EXPERIMENTAL EVALUATION

This section highlights the results of our user study and
provides a qualitative and quantitative analysis of the learned
personalized navigation controller.

1) User Study: We conducted a two-session user study
with 24 non-expert participants (13 male, 11 female) to
1) record individual navigation preferences (demonstration
session), ii) evaluate the navigation behavior learned by our
personalized controller (evaluation session). The user study

featured a room and a corridor environment. However, this
short paper only shows the room environment results.

a) Demonstration Session: During the demonstration
session, preference trajectories were recorded, see Fig. 3a. The
environment featured four position-orientation pairs (color-
coded) for the participant. For each pair, between three and
five trajectories were recorded. The total time investment was
about 20 min for each participant.

b) Evaluation Session: During the second session, our
personalized navigation approach was evaluated against two
approaches in virtual reality in unknown order: The Dynamic
Window Approach (DWA) [21] using the ROS move_base
package [22] in combination with a 2D lidar sensor, and a
social cost model (SC) based on the configuration of [23].
Each navigation approach was shown in VR for all four
position-orientation pairs (cf. Fig. 3b-d), followed by an
evaluation survey. The survey questions and results are shown
in Fig. 5a). All of the following findings are statistically
significant: Regarding the comfort and closeness perception
of the robot trajectories, our approach outperformed both
the SC and DWA. Participants saw their preference reflected
mainly in our personalized controller.

¢) Real Robot Evaluation: Our personalized controller
was demonstrated on the real robot (room environment) to
investigate the participant’s transition experience from the
simulated to the real robot. The real robot evaluation was
also complemented by a survey, see Fig. 5b). As in VR, the
navigation of the real robot was predominantly experienced
comfortable and participants saw their preferences mostly
reflected. Furthermore, the transition from the simulated robot
experience in VR to the real robot was mostly experienced
as very natural.

2) Qualitative Navigation Analysis: Fig. 3a shows demon-
stration data from two participants. The preference of par-
ticipant A is a smooth curve around their position, while
the robot drives in their field of view when approaching
from either side. Interestingly, participant B’s preference is a
wall-following robot that navigates at higher distance to the
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a) User A demonstrated a distinct speed profile when facing the robot start position. It was successfully adapted by the learned controller.

Furthermore, we tested the ability for generalization of the learned controller threefold by showcasing state configurations not covered by the demonstration
data: b) When the robot starts at a random position in the environment, its navigation behavior still reflects the characteristics of the trajectory from the
user demonstrations (cf. Fig. 3a). ¢) Even when its goal is randomly placed in the room, the robot exhibits the distinct user preferences. d) The user’s
position and orientation was altered to non-demonstration configurations. When the human is obstructing the robot’s path while facing the wall, the robot
traverses behind the human. In all cases, a distinct distance is kept to the human, as demonstrated by both users. This shows nicely how the navigation
agent improved beyond the limits of the demonstration data provided. For a legend, please refer to Fig. 3.
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Fig. 5. User study survey results of the evaluation session. a) Evaluation: In
virtual reality, both the Dynamic Window Approach and the social cost model
were outperformed by our personalized controller in various aspects. b) On
the real robot, our novel personalized controller was perceived predominantly
positive as well. The plot-bar’s positions are aligned to the neutral score (3)
to indicate overall rating.

human, compared to participant A.

Fig. 3b shows trajectories of the learned navigation behav-
ior. The learned policy clearly reflects the characteristics of
the demonstration trajectories. Furthermore, the robot adjusts
its navigation trajectory according to the human orientation.
For user A, it learned to traverse in the field of view,
compare yellow orientation and trajectories. In participant B’s
demonstration, trajectories from a single position-orientation
pair traverse both in front and behind the participant. Here, no
specific side preference is given and the controller reproduces
trajectories mainly on one side.

Beside trajectory shape, users demonstrated speed profiles
along the demonstration trajectories. As an example, Fig. 4a
depicts how user A demonstrated a distinct speed profile
when directly facing the robot start position in the room
environment. After the robot slowly approached and passed
by, it was allowed to accelerate. As can be seen, the behavior
is picked up by the controller during training.

3) Quantitative Navigation Analysis: Fig. 3e-g compare
quantitative properties of all three evaluation approaches
and demonstrations from all 24 study participants. The
personalized navigation trajectories are on average longer than
those executed by DWA or SC, while maintaining a higher
minimal distance to the human, averaged at (1.1 + 0.2) m.
The path area is calculated between the trajectory and linear
distance from start to goal. A higher path area reveals earlier
deviation from the linear path in favor of personalization, as
it is the case for our personalized controller, compare Fig. 3g.
This clearly indicates that users prefer personalized navigation
trajectories over shortest path navigation. Furthermore, the
large standard deviation of the path area indicates a high
trajectory shape variability among the participants.

4) Generalization: Finally, we tested the ability for gen-
eralization of the learned navigation policy with states not
covered by the demonstrations. First, the robot started at
random positions in the environment (cf. Fig. 4b). Second,
goal positions were randomized (cf. Fig. 4c). Thirdly, we
tested altered human positions and orientations (cf. Fig. 4d).
In all three cases reflect distinct demonstration characteristics,
compare Fig. 3a.

As demonstrated with these results, our framework can
successfully learn a personalized navigation controller that
improves beyond the limits of few demonstration trajectories.

V. CONCLUSION

To summarize, we presented both a learning framework
and an intuitive virtual reality interface to teach navigation
preferences to a mobile robot. From a few demonstration
trajectories, our context-based navigation controller suc-
cessfully learns to reflect user-preferences and furthermore
transfers smoothly to a real robot. The conducted user
study provides evidence that our personalized approach
significantly surpasses standard navigation approaches in
terms of perceived comfort. Furthermore, the study verifies
the demand for personalized robot navigation among the
participants. Our results are a first important step towards
personalized robot navigation, made possible by our interface
and user study. As a next logical step, we will transfer the
framework to more complex and diverse environments.
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