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Abstract— Emerging applications requiring robots to operate
in close proximity to people have mandated an understanding
of how to enable graceful robot navigation in shared spaces.
Existing social navigation research mainly observes a person or
group walking past a single, independent robot. Consider the
relationship between a dog and a handler carrying its leash.
The emergence of widely-available quadruped robots - often
conceptualized as robot dogs - opens a variety of interactions
by transferring the canine metaphor to the area of social
navigation. This research shifts focus from people walking past
a single robot in a shared space to people walking past human-
robot dyads; where the robot takes on the role of a dog. In
this study, participants see each of five conditions, in which
the robot is presented differently. The conditions are: “Fully-
Autonomous” - in which the robot traverses the hallway by
itself, “Remote-Controlled” - in which the a researcher follows
the robot while holding a controller, “Companion” - in which
a researcher walks alongside the robot, “Leading” - in which
a researcher follows the robot while grasping a service dog
harness, and “Guided” - in which a researcher holds the
robot on a leash. After episodes of passing the human-robot
dyad in a hallway, participants respond to a questionnaire
measuring their attitudes towards the robot in the interaction.
The results of this work are promising. Though a questionnaire
administered between study conditions asking participants to
rate their perceptions of the robot yields few statistically-
significant results, a questionnaire administered at the end of
the study asking participants to compare the conditions to each
other provides significant differences in how the participants
rate the robot.

I. INTRODUCTION

The emerging availability of quadruped robots (often
called robot dogs) opens a variety of interactions in which
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the robot is presented not in solo but as part of a human-
robot dyad. People are used to seeing dogs with handlers; pet
owners, service dogs users, and others. This work observes
the reactions of study participants after they have passed a
Boston Dynamics Spot in a hallway when the robot has been
placed in one of five cynomorphic roles. These roles are:
a Fully Autonomous mode, where the robot navigates the
environment without a handler; a Remote-Controlled mode,
where the handler follows the dog while holding a controller;
a Companion mode, where the handler walks side-by-side
next to the robot without any controller or leash; a Leading
mode, where the robot wears a service dog vest with the
handler holding a guide dog harness; and a guided mode,
where the handler holds the robot by a leash.

Interactions in this work take place in a test hallway
constructed for social navigation experiments. The study is
set up as a five condition intraparticipant design, in which
each participant sees each condition. In every condition, the
robot operates fully-autonomously; running a custom social
navigation stack developed for this experiment. The robot
is programmed to detect which side of the hallway the
study participant is on — modeling the hallway as three
“traffic lanes” — and to move to the opposite side of the
hallway in order to allow the participant to pass. After each
interaction, participants respond to a questionnaire includ-
ing measures from Godspeed Questionnaire [1] as well as
additional measures relating to potential robot deployments
from our research team. This work seeks to provide novel
contributions to the existing literature on factors influencing
human perception and acceptance of robots; and to inform
the design, development, and deployment of autonomous
service robots — quadrupeds in particular — in urban spaces
where they are likely to result in handler-robot-pedestrians
encounters.

This study continues a trend in Social Navigation and
HRI more broadly of expanding beyond dyadic interactions
into more complex configurations of humans and robots [2]–
[6]. As robot deployments become more common, there is a
growing recognition that HRI has an ethical duty to expand
its scope to include all people potentially impacted by the
robot’s presence [7], [8].

II. RELATED WORK

This study is designed to inform social navigation research
on the topic of robots accompanying a human handler by
observing reactions to a human-quadruped robot dyad.



Social Navigation in Robots Social Navigation is a
well-established task in HRI centered upon enabling robots
to perceive, react to, and conform to social norms of
movement [9], [10]. Some significant work on this task
has examined collision avoidance [11]–[13], comfort [14]–
[16], smoothness of interaction [17]–[19], effort invested
[?], [20] and other objective and subjective measures of
social acceptability when pedestrians and a mobile robot
move in a shared space. Social Navigation research often
implements autonomy based upon identifications of social
cues or socially-informed predictions of human movement
[21], [22], and has even progressed to studies of robot ability
to (socially) signal navigational intentions [13], [23]–[26].
Social Navigation as a whole is deeply informed by empirical
findings about [27]–[30], models of [31]–[33], or training
data containing [34]–[36] human social navigation norms.
This study provides empirical findings of human perception
and reaction to quadruped service robot encounters that can
inform future research.

Perceptions of quadruped service robots The relative
dearth of HRI studies of quadruped platforms in service
applications means that public perceptions are poorly un-
derstood, even as they are entering wider use and visibility.
Moreover, media portrayals of quadruped robots, which have
been shown to influence perceptions of robots [37], have
unknown impacts these perceptions. Media coverage likely to
influence public perceptions includes general interest pieces
on “robot dogs” (often with an alarmist tone; e.g., [38]), news
coverage and research reports on deployments by public
health and safety organizations [7], [39], and these platforms’
growing use in marketing campaigns, such as the 2022
Samuel Adams Superbowl ad featuring Boston Dynamics
Spot [40]. The longer this gap in research persists, the
more difficult it will be to identify and characterize changes
to and influences upon perceptions of service quadrupeds,
and to articulate how they vary across cultures and within
subcultures [41].

HRI of Quadruped Service Robots and Canine
Metaphors

Quadruped platforms intuitively suggest canine interaction
metaphors and usage. Indeed, one of the most developed
areas of research has been the study of their use as guide dogs
to assist visually impaired users with navigation [42]–[47].
Related research specifically targeting assistive use cases,
but employing canine metaphors; includes cynomorphic and
general zoomorphic expressions [48]–[50], leash-based in-
terfaces [43], [51], and dog-inspired interaction design [52],
[53].

Service-Robot-Pedestrian Encounters
There is a growing literature in HRI and adjacent fields

— such as smart cities — regarding pedestrian-robot inter-
action; much of it very recent [54]–[59]. In light of this
recency, many studies have adopted an exploratory approach
[60]. Researchers outside HRI have also begun to examine
these issues; often from critical, ethical, or justice-focused
perspectives [8], [61]–[65]. This work builds upon and is
motivated by work on long-term autonomy [66]–[68], which

Fig. 1: Diagram of the operation of the social navigation
stack. The robot operates in a hallway that is 1.25m wide.
Three lines representing “lanes” are laid out in the hallway,
0.6m apart. The robot shifts lanes when it comes within 8.5m
of the participant.

has increased the number of human-robot encounters.
While the literature around encounters — as opposed to

the direct interaction that is the traditional object of HRI
studies — continues to expand, encounters with quadruped
service robots remain poorly understood. This represents an
important gap in current knowledge, which is particularly
urgent to address as quadruped deployments become more
common, and in light of the inherent differences in percep-
tion of robots by platform and style of locomotion.

III. A SYSTEM FOR AUTONOMOUS HALLWAY PASSING

For this study, the robot’s behavior should be consistent
across trials, ensuring that all participants have similar expe-
riences. To accomplish this a custom social navigation stack
has been developed. The social navigation stack assumes that
the study participant begins at one end of a test hallway set up
in our laboratory, with the robot beginning at the other end.
The participant and robot, each walking to the opposing end
of the hallway, will pass at some point. The system divides
the hallway into three traffic lanes (similar to [25] and [?]).
The robot navigates by following one of these lanes, always
starting in the middle lane. When the robot comes within a
threshold distance of the participant (8.5m; hand-tuned for
this study), it shifts to the lane that is on the opposite side
of the hallway of the participant, making room to pass. See
Figure 1.

A. Robot Platform

For the experiment, the Boston Dynamics Spot robot
is equipped with a laptop (Ryzen 9 5900HS, RTX 3060)
running Ubuntu 21.10 and ROS Noetic in a Docker container,
a Velodyne VLP-16 LiDAR and a Microsoft Azure Kinect
point cloud camera. The robot, as equipped for the study,
can be seen in Figure 2.

B. Navigation

The robot is localized using an implementation of Episodic
non-Markov localization (ENML) [69] using a map of the
hallway area. Navigation goals are given to the robot as
ROS twist messages, translated to the Spot’s protocol using
the Clearpath Spot ROS Driver1. Visualization of the robot’s
state information is provided to robot operators (when ini-
tially setting up the robot) through Robofleet WebViz [70],
a browser-based visualizer that connects to ENML.

1https://github.com/clearpathrobotics/spot_ros
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Fig. 2: The Boston Dynamics Spot robot as equipped for this
study; including a laptop, Velodyne VLP-16 LiDAR, and a
Microsoft Azure Kinect point cloud camera.

The hallway is modeled as three traffic lanes, as illustrated
in Figure 1. The hallway is 1.8m wide, and the lanes are
modeled as lines, each 0.6m apart, with one lane in the
middle of the hallway. The robot navigates by choosing
waypoints that are 2.75m in front of it on the lane that it
wishes to navigate on. Thus, if the robot is continuing on
the same lane, it is 2.75m ahead on the same lane. If the
robot is shifting lanes, it is 2.75m ahead on the lane that
it is shifting into. This distance is hand-tuned to produce a
smooth-looking lane-shifting behavior.

C. Pedestrian Detection and Control Algorithm Behavior

To detect people in the hallway, the navigation stack
uses the Azure Kinect Body Tracking SDK2. The SDK
provides the pose of the person relative to the camera as
a track consisting of landmarks on the body. The chest is
transformed into the global frame using the ROS TF2 service.
The distance of this landmark from the left or right wall is
computed in order to determine which side of the hallway
the pedestrian is on. When the robot comes within 8.5m of
the study participant, it shifts lanes to the lane opposite that
which the participant is measured as being in.

IV. METHODOLOGY

This study was approved by the University of Texas at
Austin Institutional Review Board under Study #00002514.
A total of 26 participants were recruited from the University
of Texas at Austin campus. One participant is excluded from
data analysis for failure to complete the entire questionnaire.

A. Design

After informed consent and an optional media release are
obtained, participants are directed to one end of the test

2https://microsoft.github.io/
Azure-Kinect-Body-Tracking/release/1.1.x/index.
html

hallway, with the robot placed in the middle lane at the other
end. After the hallway interaction, the participants fill out
a questionnaire rating their attitudes toward the robot. This
interaction is repeated 5 times, exposing each participant to
each condition in randomized order. For each condition, the
robot is presented differently. The robot, as outfitted for each
condition, can be seen in Figure 3. The conditions are:

Fully-Autonomous The robot traverses the hallway by
itself with no additional costuming.

Remote-Controlled The robot traverses the hallway with
a researcher following behind, holding a game
controller, pretending to control the robot.

Companion The robot traverses the hallway with a re-
searcher walking next to it.

Leading The robot traverses the hallway with a researcher
walking slightly behind it, holding onto a service
dog harness. The robot wears a service dog vest.

Guided The robot traverses the hallway with a researcher
walking slightly behind it, holding onto a leash.

After completing the five conditions, participants complete
one final survey, comparing the conditions to each other.
After concluding the study, the participants are debriefed,
revealing the purpose of the study as well as the deception
that the robot is always operating fully-autonomously.

B. Questionnaire

The questionnaire administered to study participants be-
tween trials is based in part on the Godspeed Questionnaire
[1]. It consists of the following questions presented as 5-point
Likert Scales. “Rate your impression of the robot” from:
“Machinelike - Doglike”, “Apathetic - Responsive”, “Un-
friendly - Friendly”, “Remote-Controlled - Autonomous”,
“Unconscious - Conscious”, and “Unsafe - Safe”. “The robot
moved”: “Too Close - Too Far.” “The robot’s motion was”:
“Erratic - Under Control.” “When I encountered the robot I
felt” (“Strongly disagree” to “Strongly agree”): “Curious,”
“Cautious,” “Calm,” “Excited.” “I would be comfortable
seeing this robot” (“Extremely uncomfortable” to “Extremely
comfortable”): “Walking in an office,” “Providing delivery
services on campus,” and “Providing delivery services to my
home.”

At the end of all five conditions, a final questionnaire
is administered asking participants to compare conditions
on a subset of the questions administered between rounds.
The scales are: “Doglike,” “Friendly,” “Autonomous,” “Safe,”
“Under control,” “Comfortable to get close to,” “Comfortable
seeing walk around an office,” and “Comfortable seeing
providing delivery services.”

V. RESULTS

The results for questionnaires administered between trials
yield few statistically-significant results. The scale “Remote-
Controlled - Autonomous” is statistically significant by a
one-way Analysis of Variances (ANOVA) (F4,125 = 14.073,
p < 0.001). Using the Tukey post-hoc criterion, only
contrasts against the “Remote-Controlled” (higher is more
autonomous) condition are significant (all at p < 0.001;

https://microsoft.github.io/Azure-Kinect-Body-Tracking/release/1.1.x/index.html
https://microsoft.github.io/Azure-Kinect-Body-Tracking/release/1.1.x/index.html
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(a) Fully-Autonomous (b) Remote-Controlled (c) Companion (d) Leading (e) Guided

Fig. 3: The robot as outfitted for each of the five conditions in this study.

Fig. 4: Rankings across each metric in the final questionnaire administered to study participants. A lower rank means that
the robot is perceived better on the corresponding metric. * - Sigificant at α = 0.05, ** - Highly Significant at α = 0.01

mean difference: “Fully-Autonomous” - 1.769, “Compan-
ion” - 1.846, “Leading” - 1.423, “Guided” - 1.615). The
scale “Unconscious - Concious” is statistically significant
(F4,125 = 4.428, p = 0.011). Using the Tukey post-
hoc criterion, most of the contrasts against the “Remote-
Controlled” (higher is more autonomous) condition are again
significant (mean difference: “Fully-Autonomous” - 1.038,
p = 0.33; “Companion” - 1.192, p = 0.009; “Leading” -
0.808, p = 0.161; “Guided” - 0.923, p = 0.077).

Results for questionnaire administered at the end of the
study are mostly significant, however. For the end question-
naire, participants are asked to rank the conditions against
each other. There is one small bug in the way that this
ranking was administered, in that it is possible to (and
participants did) give two conditions the same ranking.
Rankings can be seen in Figure 4. Statistical significance
is computed using the Friedman Test. From these results,
it can be seen that the “Guided” and “Leading” conditions
are viewed as the most “Doglike”; the “Fully-Autonomous”
condition is seen as the most autonomous; and the “Remote-
Controlled,” “Leading,” and “Guided” conditions are seen
as the most safe. “Remote-Controlled” is seen as the most
under control, but participants are most comfortable getting
close to the “Guided” and “Leading” robots.

VI. DISCUSSION

The results of this study indicate that by placing the robot
contextually into different handler-canine roles that partici-
pants’ perceptions of the robot on several important metrics
can be changed. Importantly, it can be seen that pedestrians
can be made to feel safer and more comfortable getting close
to quadruped robots that are placed into traditional handler-
canine roles, such as being walked on a leash or in service
dog gear. It would take many study participants to extend
this study to an inter-participant design, but this may help to
increase the contrast in ratings between conditions.

This work serves as a starting point into more extensive re-
search on quadruped social navigation that is in the planning
phases, wherein there are plans to place quadruped robots
into useful roles such as guiding the blind or doing jobs
guided on a leash. These results indicate that there is the
potential for quadruped robots to be well-received in these
roles.
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