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Abstract— To navigate in human social spaces, self-driving
cars and other robots must show social intelligence. This
involves predicting and planning around pedestrians, under-
standing their personal space, and establishing trust with them.
The present paper gives an overview of our ongoing work on
modelling and controlling human–self-driving car interactions
using game theory, proxemics and trust, and unifying these
fields via quantitative models and robot controllers.

I. INTRODUCTION

Recent years have witnessed the rapid deployment of
robotic systems in many places such as roads, pavements,
workplaces and care homes [27], [35]. Robot navigation
in environments with static objects is largely solved, but
navigating around humans in dynamic environments remains
an active research question. To operate in human social
spaces, robots must show social intelligence, i.e. the ability to
understand human behaviour via explicit and implicit com-
munication cues for better human-robot interactions (HRI)
[33]. Autonomous vehicles (AVs), also known as “self-
driving cars” are appearing on the roads but need better
understandings of pedestrians’ social behaviour, especially
in urban areas [31]. In particular, previous work showed that
pedestrians may take advantage over autonomous vehicles
[17] by intentionally and constantly stepping in front of
AVs, hence preventing them from making progress on the
roads, this is known as the ‘freezing robot problem‘ [34].
This inability of current AVs to read the intention of other
road users, predict their future behaviour and interact with
them is described as ‘the big problem with self-driving cars’
[2]. Thus, AVs need better decision-making models and must
find a good balance between stopping for pedestrians when
required and driving to reach their final destination as quickly
as possible for their on-board passengers.

We recently performed two comprehensive reviews of
existing pedestrian models for AVs, ranging from low-level
sensing, detection and tracking models [3] to high-level in-
teraction and game theoretic models of pedestrian behaviour
[4]. These reviews found that existing lower-level models
are accurate and mature enough to be deployed on AVs but
more research is needed in the higher-level models. Hence,
in our work, we focus on modelling, learning and operating
pedestrian high-level social behaviour on self-driving cars
using game theory, proxemics and trust.
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(a) Road-Crossing Scenario (b) Game Theory Model [19]

Fig. 1: Two agents try to cross over an intersection as quickly
as possible while avoiding a collision. The first agent to pass
wins the game (reward), the second looses (small penalty)
and they are both bigger losers if there is a collision (large
penalty).

II. SEQUENTIAL CHICKEN GAME THEORY MODEL

Game theory is widely used to model decision-making
between rational agents, in economics [26] and in multi-
agent systems coordination [25]. Its core concept is Nash
equilibrium, which is a set of optimal actions for the agents
in the absence of information about the other’s choices.

We have created a game theoretic model [19] of a pedes-
trian and an AV negotiating for shared space as a pedestrian
considers whether to cross in front of the AV’s path as in Fig.
1a. This is modelled as a discrete sequential game theory
model based on the ’game of chicken’ as shown in Fig.
1b. The model has two utility parameters (Utime , Ucrash),
which refer to the value of time and the utility of avoiding
a collision. The pedestrian X and autonomous driver Y are
moving towards each other at an unmarked intersection. This
occurs over a discrete space (the path is formed of squares) as
in Fig. 1b and discrete times (‘turns’) during which the agents
can adjust their discrete speeds. Here a turn corresponds to
one discrete time step, i.e. the time offered to the agents to
make a new decision. They simultaneously select their speed
of either 1 square per turn (SLOW) or 2 squares per turn
(FAST), at each turn. Space and time are discrete to keep
the model simple and computationally tractable. Both agents
want to pass the intersection as soon as possible to avoid
travel delays, but if they collide, they are both bigger losers
as they both receive a negative utility, Ucrash. Otherwise if
the players pass the intersection, each receives a time penalty,
−TUtime, where T is the time from the start of the game
and Utime is the value of one turn of travel time.

The model assumes the two players choose their actions



(speeds) aY , aX ∈ {1, 2} simultaneously then implement
them simultaneously, in discrete-time turns. There is no
lateral motion (positioning within the lanes of the roads)
or communication between the agents other than via their
visible positions. The optimal strategies are derivable from
game theory together with a novel meta-strategy convergence
solution concept, via recursion. Sequential chicken can be
viewed as a sequence of one-shot sub-games, whose payoffs
are the expected values of new games resulting from the
actions, and are solvable by standard game theory.

Results from the mathematics and simulations agreed on
a solution to the freezing robot problem. If the vehicle
is programmed to be perfectly safe and always yield to
pedestrians, it will freeze and never make any progress in
a series of pedestrian interactions. Instead, in this model, it
must be programmed to deliberately collide with the pedes-
trian with a small but non-zero probability. This provides a
credible threat sufficient for the vast majority of interactions
to proceed without collision, but with some of the pedestrians
yielding to allow the vehicle to make progress.

III. LEARNING PARAMETERS FROM REAL-WORLD &
VIRTUAL REALITY EXPERIMENTS

To validate this game theory model [19], we ran several
experiments with human participants to infer the utility
parameters. In a first empirical study [14], we measured
participants’ behaviour whilst playing the game theory model
as a board game. The parameters of the model could be
inferred via a Gaussian Process (GP) regression [30] and the
results showed that participants had a preference for saving
time, Utime, rather than avoiding a collision, Ucrash. This
study provided a first empirical understanding of the human
factors required by future game theoretic autonomous vehi-
cles. In a second study [5], we developed a novel empirical
method based on tracking real humans in a semi-structured
environment and used their discrete positions to model and
predict their behaviour with game theory. We made use of
dynamic programming to compute the optimal game theo-
retic solution form, then found the behavioural parameters
via empirical observation and a GP regression analysis. This
method formed a step towards game-theoretic controllers for
autonomous vehicles in similar real-world situations such
as negotiations over priority at un-signalled road-crossings.
This second study showed that participants were globally
playing rationally, 11% of them deviated from their optimal
behaviour. It also confirmed participants’ preference for time
saving rather than collision avoidance, this unusual result
was due to the high safety conditions of the experiment.
In a third study [6], we extended our method to work with
continuous trajectory data and found similar results as in [5].
The biggest drawback with these three empirical experiments
is that participants were behaving as if they were in a
competition and so their preferences for saving time was
rather unrealistic and discarding the high negative utility
associated with a real-world crash, which could potentially
lead to death. As a consequence, we moved to virtual reality
(VR) to further investigate human interaction preferences in

Fig. 2: Virtual AV and participant in the VR Experiment.

Fig. 3: Top view of the scenes used for the VR experiment.

two virtual environments, as shown in Figs. 2 and 3, because
VR offers the opportunity to experiment on human behaviour
in simulated real-world environments that can be dangerous
or difficult to study. We developed a virtual game theoretic
autonomous vehicle that interacted with human participants
[7], [8], [18]. The results showed a more realistic crossing
behaviour from participants, preferring avoiding collisions
with the virtual AV rather than saving time. When presented
with different AV behaviours via a gradient descent approach,
participants preferred an AV that makes its decisions quickly.
Finally, we found similar crossing behaviours in both virtual
environments, as previously shown in [28].

IV. LEARNING INTERACTION SEQUENCE PATTERNS
FROM PEDESTRIAN–VEHICLE DATA

To learn social behavioural patterns from current
pedestrian–vehicle interactions, we collected a large-scale
dataset from real-world human road crossings [12].
Pedestrian-vehicle interactions were decomposed into se-
quences of independent discrete events. We looked for com-
mon patterns of behaviour that can predict the winner of
an interaction. We used logistic regression, decision tree
regression, and motif analysis to find sub-sequences of
actions used by both pedestrians and human drivers while
crossing. We found predictive features that could inform the
AV about the eventual winner of an interaction. We then used
the same dataset to study the temporal orderings (filtration) in
which features (including signals from the pedestrian) can be
revealed to an autonomous vehicle and their informativeness
over time during pedestrian-vehicle interactions [11]. This
framework suggested how optimal stopping controllers may
then use such data to enable an AV to decide when to act
(by speeding up, slowing down, or otherwise signalling intent
to the pedestrian) or alternatively, to continue at its current
speed in order to gather additional information from new



Fig. 4: Autonomous vehicle entering pedestrian’s social zone, which can also be viewed and quantified as a trust region.

features, including signals from that pedestrian, before acting
itself. Here we found that the AV should wait and observe
about 7 to 10 features before acting/making its decision.
Using the public Daimler pedestrian dataset [21] we also
developed simple heuristic features which can be fused to
predict road crossing intent to some extent [13]. These pre-
dictions could be integrated into Sequential Chicken based
AV controllers as priors to improve their predictions and
interactions.

V. UNIFYING & QUANTIFYING PROXEMICS AND TRUST

The Sequential Chicken model showed that if the vehicle’s
only way to inflict negative utility onto pedestrians is to
actually hit them, then it must be programmed to deliberately
provoke a crash occasionally in order to make progress. This
is clearly an undesirable and unethical solution to the real-
world freezing robot problem. However, the equations of
the model still work if other, less violent, forms of negative
utility are made available for the vehicle to inflict upon mem-
bers of the public, with higher frequency traded for lower
damage. Possible solutions that are currently under debate
might include spraying jets of water at anti-social pedestrians
intentionally blocking the AV’s path, or humiliating them in
public using horns as is often done my human drivers to
penalise other road users’ anti-social behaviour [36].

An intriguing additional option which we have chosen to
explore is to make over-assertive pedestrians feel uncom-
fortable by invading their proxemic space. The theory of
proxemics was introduced by Hall [20] to describe humans’
psychological sense of comfort or discomfort during physical
interactions. Hall proposed four distinct zones: the intimate
up to 0.45m, the personal ranges from 0.45m to 1.2m, the
social between 1.2m to 3.6m, and the public beyond 3.6m
[23]. Social robotics experiments have shown that these
proxemic zones change in size when humans interact with
robots of different heights, appearances, speeds, voices, and
also for different HRI activities [32].

We recently developed the first mathematical model of
proxemics and trust concepts for self-driving cars and pedes-
trians interactions [10]. It defined the trust zone as the area
of the proxemics zones where trust is required i.e., one agent
has to rely on the other during the interaction. In [10], we
define a trust zone as a set of physical states in which a first

agent, called Agent1 is in a position of vulnerability and
has to rely on the actions of a second agent, called Agent2.
The trust zone comprises those states in which Agent2 can
choose whether to stop for the Agent1 but Agent1 cannot
avoid a collision by themselves, given their physical speeds
and stopping distances. Formally, the work in [10] defines
physical trust requirement (PTR) as a Boolean property of
the physical state of the world (not of the psychology of the
agents) with respect to Agent1 during an interaction, true if
and only if Agent1’s future utility is affected by an immediate
decision made by Agent2. This model assumes that the two
agents are approaching each other at a right angle, as is the
case where one crosses the other’s path, as shown in Fig. 4.
It then defines the following three zones based on the PTR:

Crash zone is the region close to Agent1, {d : 0 < d <
dcrash},

dcrash = v2t2 +
v22

2µ2g
, (1)

in which a crash is guaranteed and neither party can prevent
it [24], v2 is Agent2’s speed. The first term depends on
Agent2’s thinking reaction time, t2, and the second term
represents the physical braking distance if Agent2 is a
wheeled agent, µ2 is the coefficient of friction between
Agent2’s tyres and tarmac, and g is gravity. If Agent2 is
a walking agent, we will here assume this second term is
omitted as walkers are always in static equilibrium and can
stop instantly once a decision is made. Running agents [22]
or finer detailed models of walkers [29] could use different
braking models.

Escape zone is the area where Agent1 is able to choose
their own action to avoid collision, without needing to trust
Agent2 to behave in any particular way. If w2 is the width of
Agent2, which Agent1 must cross at speed v1 to pass first,
the escape zone is then the set {d : descape < d} with

descape = v2t1 + w2
v2
v1
. (2)

Trust zone is the region {d : dcrash < d < descape} where
the PTR is true. Agent2 can here choose to slow down to
prevent collision, but Agent1 is incapable of making any
action to affect this outcome themselves. This occurs when
Agent1 cannot get out of Agent2’s way in time to avoid



Fig. 5: Distances and zones predicted by the PTR model for
different car speeds v at lower speeds.

collision, but Agent2 is able to slow to prevent the collision
if it chooses to yield.

Note that these zones are not symmetric between Agent1
and Agent2. They describe when Agent1 must trust Agent2.
Their roles must be swapped and the zones recomputed to
see when Agent2 must trust Agent1. The crash, escape, and
trust zones were mapped to Hall’s personal, public, and social
zones respectively, for Agent1 [10]. The trust/social zone is
the region in which physical trust is required. This may be
a prerequisite for some types of interactions, with physical
trust being useful to enable the content of the interaction. The
evidence for this mapping came from the observation that if
an autonomous vehicle Agent2 is set to drive at the same
speed as a pedestrian Agent1, the model generates Hall’s
proxemic social zone to within 4% quantitative accuracy of
Hall’s original empirical sizes. This unexpected result, found
by studying how an AV should interact with pedestrians, may
now explain a larger question about how humans interact
with each other and with other types of robots. Hall’s zone
sizes have previous been only empirical observations but
the PTR model now explains them generatively and to 4%
accuracy for the first time. We then extended this model for
more general human-human interactions and HRI by taking
different interaction headings into account and found an error
down to 1% [9].

VI. OPENPODCAR: OPEN SOURCE HARDWARE PLATFORM
FOR SOCIAL NAVIGATION RESEARCH

Laboratory and VR experiments on pedestrians are limited
in realism, so to scale our models towards the real world,
we need a real autonomous vehicle. Commercial AVs are
very expensive, beyond reach of our most other labs who
may wish to replicate and extend our work. So we have
developed a new low-cost, autonomous vehicle research plat-
form, OpenPodcar shown in Fig. 6 and based on an off-the-
shelf, hard-canopy, mobility scooter donor vehicle. We are

Fig. 6: OpenPodcar: open source hardware AV [15].

releasing OpenPodcar [15] as open source hardware (OSH,
[1]) together with a full automation open source software
(OSS) stack. This will enable other groups to replicate our
complete system and experiments, and to use their own
research to extend and contribute to a single shared system,
which can evolve over time towards real-world use.

Hardware and software designs are provided to convert the
donor vehicle into a low-cost and fully autonomous platform.
The open source platform consists of (a) hardware compo-
nents: CAD designs, bill of materials, and detailed build
instructions; (b) Arduino, ROS [16] and Gazebo software
files which provide standard interfaces and physical simula-
tion for the vehicle; (c) higher-level ROS implementations
of standard robot control, including the move base interface
with Timed-Elastic-Band planner which enacts command
to get the vehicle move from one pose to another, (d)
lidar based pedestrian detection and tracking. The platform
is large enough to transport one person at speeds up to
15km/h, for example for use as a last-mile autonomous taxi
service or to transport delivery containers similarly around
a city center. It is small and safe enough to be parked in a
standard research lab and be used for realistic human-vehicle
interaction studies. System build cost from new components
is around 7,000USD in total in 2022, with our own build
from second-hand components costing around 2,000USD.

VII. SUMMARY

The sequential chicken model showed that if an AV’s only
available actions are to yield to pedestrians or drive forward,
then it must be programmed with a small collision probability
in order to create a credible threat to solve the freezing robot
problem. However, we found that the rare large negative
utility of a crash can be replaced by more frequent but
smaller penalties using human proxemic preferences. Our
proxemics study has provided a generative explanation for
the numerical sizes of Hall’s empirical zones for the first
time, and can now be used to control and adapt the AV’s
behaviour more safely. OpenPodcar platform will enable
other researchers to run and extend this interaction model
and we invite the community to join in.
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